породы деревьев

44 записи

При изготовлении деревянных, резных изделий из массива дерева очень важно правильно выбрать нужную породу, знать свойства и характеристика различных пород древа.

Структура древесины

изделия из массива на заказ

Для сохранения мебели важно знать свойства и поведение древесины. Только тогда, когда определены основные рабочие свойства, идентифицированы, и выявлены понятия о древесине, знания по её сохранению могут принять ответственные решения в дальнейшей работе. Собственное знание дерева, как материала, будут способствовать углублению понимания в нём таких проблем как: ухудшение, профилактическое сохранение и реставрация. В этой главе рассматриваются структура и свойства древесины, и их соотношения друг с другом. Она также включает информацию о структуре древесины и основных данных о производстве пиломатериалов.

структура древесины – о дереве как о материале

Древесина была всегда необходимой для человеческих потребностей, и поэтому не удивительно, что мы находим древесину в центре нашего культурного наследия. Из-за своих уникальных физических свойств, древесина держит заслуженный статус как технический, материальный и функциональный товар. Но красота самого материала, если его рассматривать с тактильными свойствами и рабочими характеристиками, гарантирует, что древесина обладает качественным средством в декоративном искусстве. Хотя та манера, в котором часто использовали древесину, используя его в своих интересах как эстетическую ценность, его историческое использование наиболее близко связано с материальными свойствами. Только путём изучения древесины в качестве конструкционного материала, помня его биологическое происхождение, можно в полной мере оценить ремёсла и искусства, развитые вокруг него.

структура древесины – достоинства и свойства

Достоинства и свойства древесины, настолько хорошо известны всем, что иногда трудно сделать шаг назад и рассмотреть её объективно – и научно. Учитывая, что есть десятки тысяч разновидностей древесины, пригодной для употребления в производстве, очевидно, что при этом можно ожидать и широкий спектр её характеристик. Однако многие основные характеристики, являются общими для всех древесных растений, и было бы целесообразно начать с рассмотрения этих обобщений, которые наиболее важны, но чаще занижены.

Одна идея является главенствующей: древесина поступает из деревьев. Хотя такое утверждение, кажется глупо элементарным, оно имеет фундаментальное значение для понимания сложного характера древесины. Запоминание этой основной действительности, поможет предотвратить или решить многие проблемы, связанные с древесиной. Структура древесины является результатом целого ряда сложных химических реакций. Она начинается с фотосинтеза, протекающего в живых деревьях. Фотосинтез – это процесс, в котором преобразуются углекислый газ и вода, используя энергию солнечного света, захваченного хлорофиллом в листьях, на простой сахар. Этот простой сахар в конечном итоге образует как продукты питания, так и строительный материал для дерева. Ствол обеспечивает механическую поддержку кроны, служит в качестве средства транспортировки между кроной и корнями, и, при случае, хранит заметное количество материального резерва питания. Древесина является стойкой, закалённой, относительно лёгкой, так как её клетки, в основном, заполнены воздухом. Будучи растительного происхождения, она мягкая, по сравнению с железом или камнем (другими материалами эквивалентной силы), и поэтому сравнительно легка в обработке, но, при этом, удивительно прочна. Эти свойства, вместе с богатой вариацией в декоративных характеристиках, являются результатом образования зёрен и цветных маркировок, на продольных поверхностях древесины, что делают его уникальным среди строительных материалов.

Хотя её строение, и многие приложения сравнительно просты, дерево само по себе является веществом большой сложности. Для наилучшего использования этого материала, необходима степень научно – технического понимания. Техническое определение древесины – ксилема от стебля (ствола) растения, которая является сосудистой, многолетней, стойкой и способной, на основании деятельности камбия или растущего слоя, вторичному утолщению. Древесину можно также описать как клеточное полимерное соединение. Эта короткая фраза заключает много важной информации о дереве. Во-первых, древесина – это клетчатка. Происхождение, идентификация и рабочие свойства древесины, могут быть поняты наилучшим образом и истолкованы через природу организации и распределения различных типов её клеток. Во-вторых, это полимерный композитный характер дерева, который лучше всего объясняет механические свойства и древовидные отношения.

структура древесины – исследование древесины

Исследование древесины обычно начинается на клеточном уровне. Это целесообразно и важно для того, чтобы думать о древесине как о системе клеток. Древесные клетки развивались в удовлетворении потребностей дерева, с одной стороны, для того чтобы быть хорошими структурными балками и колоннами, с другой стороны, чтобы обеспечить систему для проведения сока и для хранения пищевых продуктов материала. Клетки специализированны для этих механических и физиологических функций, прежде всего, являясь удлинёнными и подобными волокну, располагаясь параллельно оси ствола дерева. Выравнивание этих продольных ячеек в древесине определяет своё “направление зёрен”. Ствол дерева “растёт” в диаметре, добавляя цилиндрические слои ячеек, которые мы называем годичными кольцами. Сочетание осевого направления продольных клеток, и их расположение, в годичных слоях, даёт древесной ткани трехмерную ориентацию, и свойства древесины значительно отличаются по своей структуре в трёх направлениях.

Основными химическими компонентами вещества клеточной стены является целлюлоза, химические добавки и лигнин – поразительно схожий со всем множеством массива всего леса. Однако, такая часть как живая заболонь (внешняя, функционально активная часть ствола), преобразуясь в неживую сердцевину дерева, формирует химические вещества известные как экстракты, в довольно незначительном количестве могут передать существенные изменения некоторым свойствам.

Хотя многие общие положения можно применять ко всем древесинам, тем ни менее, важно ценить широкий диапазон различий, которые существуют. Например, в целом, плотность – вероятно одна физическая характеристика древесины, которые лучше всего предсказывает многие другие свойства и определяет его потенциальное использование. Плотность – масса объёма единицы вещества, то есть, масса, разделенная на объём. В единицах СИ, плотность может выражаться в килограммах на кубический метр (кг/м3 ), в граммах на кубический сантиметр (г/см3 ) или в фунтах на кубический фут (lb/ft3 ).

Термин удельная масса был прежним термином для отношения плотности вещества к воде. В настоящее время в место него используется термин относительная плотность. Осознание того, что диапазон относительной плотностью менее чем 0,1 для самых лёгких древесин и более чем 1,3 для тяжёлых – показывает очевидные различия между лесами.

В традиционном подходе к классификации древесины, ботаническая таксономия служит логической структурой, по которой древесина классифицируется по одному из двух больших групп, называемых хвойными и лиственными породами. Слова хвойные и лиственные породы, к сожалению, являются неудачными для терминологии, поскольку они не точно отображают относительную твёрдость и плотность древесины, которую они представляют. Скорее древесина этих двух групп различается по типу и расположению состава их клеток. Хвойные породы принадлежат к группе деревьев называемых Гумно-сперматозойдами – примитивные, хвойные или имеющие конус деревья с голыми семенами и, главным образом, иглой в качестве листьев. Соответственно, лиственные породы относятся к группе деревьев, более точно называемые – покрытосеменные растения. Фактически, на основе клеточных различий, древесину из этих двух групп можно легко отличить визуально при относительно низком увеличении. Дальнейшее разграничение древесины в пределах каждой группы для идентификации, предполагает изучение дополнительных клеточных структур, обычно с микроскопическим увеличением. Систематическое изучение анатомии, идёт рука об руку с изучением строения дерева,хотя дружественные отношения с анатомией, также, фундаментальны с пониманием других аспектных свойств древесины.

Взаимоотношение древесины и влаги, вероятно, является наиболее первостепенной проблемой при использовании древесины и в области сохранения объектов, чем любой другой аспект свойств древесины. Хотя такие проблемы могут быть и сложны, основные принципы можно легко разрешить. Во-первых, деревья являются влажными, так как содержат большое количество влаги в виде сока. Во-вторых, так как пиломатериал, взятый из деревьев, высушен для соответствующего использования, он теряет большую часть своей влажности. В-третьих, потеря этой влажности влияет на многие свойства, такие как: увеличение силы, но уменьшение размеров (усадка). В-четвёртых, после первоначального высыхания, древесина остаётся гигроскопической и продолжает адсорбировать или выделять влажность, и, следовательно, изменять размеры и другие свойства, при изменении относительной влажности окружающую её среды.

Следующий параграф будут более подробно посвящён различным аспектам взаимоотношения между внешним видом, структурой и функциями древесины, чтобы правильно понимать множество проблем, с которыми сталкиваются мебельщики.

структура древесины – клеточная структура и идентификация

Практически вся древесина в производстве мебели является продуктом стебельной части зрелых деревьев. Стебель, также называют стволом, и чаще поставляют в виде “брёвен” для дальнейшей обработки и складирования. Поэтому каждый из компонентов мебели, будь то плоским листом пиломатериала поверхности стола или повернутой ножкой стула, можно интерпретировать с точки зрения его первоначального положения в дереве. Многие характеристики являются общими для всех деревьев и могут обсуждаться без учёта конкретного типа древесины. При рассмотрении возможных подробностей клеточной структуры, будет уместно обсудить хвойные и лиственные породы в отдельности.

структура древесины – поверхностные особенности

Поперечный или продольный разрез бревна представляет вниманию его важные составляющие. На периферии бревна – слой коры (также называемый флоэмой), которую легко распознать. В пределах коры – главная часть ствола дерева (ксилема). Микроскопически тонкий слой клеток – камбий, отделяет кору от основной части дерева. При рассматривании продольной поверхности разреза, отдельные части клеток древесины, обычно, невозможно рассматривать без увеличения, а в некоторых видах лиственных пород, крупнейшие элементы клеток, можно увидеть на чисто отпиленных поверхностях.

Однако мы признаём, знакомую схему круговых колец роста, концентрически расположенных вокруг центральной сердцевины. В приделах каждого кольца, и в зависимости от разновидности, первоначально сформированного слоя в раннем возрасте дерева, можно значительно отличать от внешнего – позднего древесного слоя. Текстурное проявление или “рисунок” продольной поверхности, по которому мы можем распознать древесину, является наиболее частым результатом вариации раннего и позднего древесного слоя. Отличие раннего слоя древесины от поздней, обычно объясняется изменением характеристик в ячейках, в результате этого, поздний слой древесины – с большей плотностью, чем ранний слой дерева, но в некоторых лесах, может и не быть значительных различий в свойствах в рамках годичных колец.

Индивидуальные клетки древесины, как правило, имеют вытянутую форму, хотя они различаются в зависимости от пропорций: от корот-ких и бочкообразных к продолговатым и подобным игле (рис. 2). Большинство клеток являются продольными, то есть, они вытянуты параллельно к оси ствола, поэтому мы видим их в поперечном сечении. По продольной части древесины рассеяны группы клеток, расположенные горизонтально к оси дерева. Эти группы расходятся радиально к наружной части по отношению к сердцевине и называются лучами. Лучи плоских лент клеток располагаются горизонтально плоскостям вертикальных лент. Индивидуальные клетки лучей всегда слишком малы, чтобы увидеть их без увеличения, и поэтому узкие лучи не являются очевидными. Однако у некоторых разновидностей лиственных пород, лучи имеют ширину до нескольких клеток, что отчётливо позволяет увидеть их на поперечных сечениях. Совокупность лучей клеток у большинства видов, составляют менее 10% объёма древесины. Важно помнить, что лучи присутствуют в каждой разновидности и, независимо от того, видны ли они или нет, они несут большое значение во многих свойствах древесины.

Композиция из годичных колец на древесном стволе, вместе с вертикальным и горизонтальным расположением клеток, создают трёхмерную ориентацию в структуре ячеек (рис. 3). Плоскости, перпендикулярные к оси ствола называются поперечными плоскостями или плоскостями поперечного сечения, как правило, представляются на торцах бревна. Поскольку поперечные сечения дерева проходят по окружности, через сердцевину ствола (как и радиус окружности), они являются радиальными плоскостями или поверхностями. Плоскости, параллельные сердцевине, но не проходящие через неё, формируют тангенс по касательным круговым кольцам структуры роста, и называются тангенциальными плоскостями или поверхностями. Кривизна годичных слоёв не являются геометрически регулируемой, и поэтому рассматривается поверхность наиболее идеальная тангенциальной, где плоскость перпендикулярна к радиальной плоскости. Однако любая поверхность бревна, как правило, принимает тангенциальную поверхность. В небольшом кубе из дерева, кривизна колец незначительна, так что куб может представлять достаточно точные ориентиры по поперечным, радиальным и тангенциальным видам. Эти части или разделы древесной ткани, как правило, удалены с поверхности для изучения, они называются поперечными, радиальными и тангенциальными секциями. Эти плоскости зачастую просто обозначаются буквами X, R и T, соответственно.

структура древесины – текстура

Древесина может иметь грубую или гладкую поверхность, с неравномерной текстурой или промежуточными группами. Классификации по степени грубости или гладкости делается на основании анализа плоскостей – шероховатости и изобилия лучей. Древесные породы, такие как дуб, в котором в большей степени или, как говорится, гораздо шире нуждаются суда, состоят из грубой текстуры. Когда изготовление из платана коробок или судов – меньше востребовано из-за содержания узких лучей древесины, тонкости и мелкозернистости структуры. Текстура древесины – является важным фактором в определении его пригодности для специфического применения. Например, самшит является наиболее соответствующим для точного, детального вырезания или обрабатывания, чем дуб. Текстура также связана с гладкостью поверхности и в связи с этим влияет на окраску поверхности и применение в производстве. Все хвойные – являются шероховатыми или, в лучшем случае, с относительно грубой текстурой, так как их клетки относительно небольшого диаметра. На текстуру древесины хвойных пород влияют чередования зон ранней и поздней древесины дерева. Когда отмечен контраст между зонами, как в пихте Дугласа и лиственнице, можно сказать, что текстура неравномерна. Такие пиломатериалы, как ель, в которых мало или нет значительного контраста от ранней и поздней древесины дерева, являются текстурированными. Эти условия могут быть применены и к древесине, где его пористые кольца можно рассматривать как неравномерное и диффузно-пористые, если они не имеют широких лучей или широкого слоя древесной паренхимы, так же как и текстурированные.

структура древесины – рисунок

Признаётся много видов рисунков. Упомянутые выше текстуры, являются основными компонентами, вытекающими из всего многообразия зёрен (с которыми взаимодействуют многие другие компоненты). Кроме того, рисунок может быть получен от распределения отдельных видов тканей в древесине. Примером этого являются широкие лучи истинных дубов и Австралийского шелковистого дуба, рисунки которых называются серебряными фигурами, образованными в результате конкретного распределения лучей тканей в этих деревьях.

Чередующиеся слои тёмной, плотной поздней древесины и светлой, менее плотной ранней древесины, образовывают пламенные фигуры у некоторых хвойных пород, например у пихты Дугласа, когда просматривается плоскость рассечении при распиле. Распределения древесной паренхимы широко заметны в лиственных породах, и также приводят к изображению пламенного рисунка, более известного как муар. Аналогичный рисунок может также быть в древесинах с чередующимися слоями разных цветов, в таких, как полосатый Эбонис (чёрное дерево). Положение и декоративный эффект рисунка зависит не только от правильного распила древесины, но также и от его природного блеска, благодаря способности клеток отражать свет. Также важно, хотя и не обязательно связанное с блеском, это способность древесины принимать хорошую полировку.

структура древесины – цвет

Цвет древесины, является важной частью с практической точки зрения, поскольку это может усилить или отвлечь от декоративной ценности древесины, что обусловлено в основном инфильтратами в клеточных стенках. Они могут быть затронуты при воздействии света, воздуха и тепла, в результате чего цвета древесины меняться с течением времени. Они могут также взаимодействовать с другими материалами, к примеру, когда дуб вступает в реакцию с железом отмечено изменение цвета. Инфильтрат и попадание в клетки небольшого количества древесных пород, во время строгания, распиловки, шлифовки и т. д., могут вызывать раздражение слизистых мембран или дерматита, что в некоторых случаях, может быть весьма опасно. Мэйнсония, мэйко и тик – специфические примеры лесоматериалов, которые могут вызвать более серьёзные побочные реакции. В других случаях отличительных запах или вкус может сделать древесину особенно подходящей или особо неподходящей для данного применения.

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Механические свойства древесины.

изделия из массива на заказ

общие сведения о механических свойствах древесины

При использовании древесины в качестве конструкционного и поделочного материала, а также в технологических процессах обработки проявляются ее механические свойства, характеризующие способность древесины сопротивляться механическим усилиям. Показатели этих свойств древесины определяют путем специальных экспериментов — механических испытаний, при которых создают различные напряженные и деформированные состояния образцов древесины. Задачи механических испытаний сводятся к установлению двух видов показателей: во-первых, показателей, характеризующих прочностные свойства древесины; во-вторых, показателей, характеризующих способность древесины деформироваться.

Прочностные свойства оцениваются величиной усилий (напряжений) или работы, которую может выдержать материал при нагружении до разрушения или заданного значения деформации. Следовательно, в эту группу свойств можно включить собственно прочность, т. е. способность древесины сопротивляться разрушению от приложенных механических усилий, а также, с известной условностью, твердость — способность сопротивляться внедрению в древесину другого твердого тела (ограниченное разрушение) и ударную вязкость — способность поглощать работу без разрушения при практически мгновенном приложении нагрузки. В качестве показателя прочности определяют максимальные напряжения, достигнутые к моменту разрушения образца — предел прочности. Этот показатель обычно устанавливают при испытаниях на сжатие, растяжение, статический изгиб, сдвиг и очень редко при кручении.

Показателем твердости служит величина усилия, необходимого для внедрения в образец древесины пуансона на заданную глубину (статическая твердость), или величина работы, приходящейся на единицу площади отпечатка, остающегося на образце древесины после падения металлического шарика (ударная твердость). Мерой ударной вязкости является удельная величина работы, потребной для разрушения образца при ударном изгибе. В связи с тем, что древесина относится к анизотропным материалам, определение показателей механических свойств проводится по разным структурным направлениям — вдоль и поперек волокон (по радиальному и тангенциальному направлениям).

При установлении параметров технологических процессов механической и гидротермической обработки древесины, при расчете элементов деревянных конструкций и в других случаях необходимо аналитическое определение напряженного и деформированного состояния древесины. Многие конкретные задачи могут быть решены методами теории упругости и теории сопротивления материалов. Обе указанные теории основаны на допущении, что материал, воспринимающий усилия, наделен свойствами идеального упругого тела. Иными словами для такого материала должна быть характерна способность практически мгновенно (со скоростью звука) деформироваться при приложении нагрузки и столь же быстро и полностью восстанавливать свою форму после снятия нагрузки. Зависимость между напряжениями и деформациями идеально упругого тела — линейная и выражается законом Гука. Более общие и строгие решения получают на основе теории упругости; частные и в значительной мере приближенные, но, как правило, достаточные для большинства инженерных расчетов — на основе теории сопротивления материалов.

Основная зависимость теории упругости называется обобщенным законом Гука и выражается системой уравнений, в которые входят составляющие деформаций и напряжений, действующих на трех взаимно перпендикулярных площадках (компоненты тензоров деформаций и напряжений). Связь между тензорами напряжений и деформаций осуществляется через упругие постоянные.

У древесины близкая к линейной зависимость между напряжениями и деформациями наблюдается при кратковременных нагрузках до величины, соответствующей пределу пропорциональности. При этом можно с приближением считать, что древесина подчиняется закону Гука и упругие постоянные являются показателями деформативности ее как упругого тела. Однако нельзя забывать структурные особенности древесины, которые определяют явно выраженные различия упругих свойств по разным направлениям, т. е. упругую анизотропию. Следовательно, применительно к древесине должна быть использована теория упругости анизотропного тела.

Малым объемам древесины, в которых пренебрегают кривизной годичных слоев, можно с достаточным основанием приписать свойства ортогональной анизотропии, т. е. считать древесину ортотропным телом. Ортотропное тело имеет три взаимно перпендикулярные плоскости упругой симметрии. Любые два направления, симметричные относительно каждой такой плоскости, эквивалентны в отношении упругих свойств. Направления, нормальные к плоскости упругой симметрии, называются главными направлениями упругости.

При ортогональной схеме упругой анизотропии древесины плоскостями упругой симметрии являются две продольные — радиальная и тангенциальная (по отношению к годичным слоям) — и одна перпендикулярная направлению волокон. Нормали этих плоскостей совпадают с направлением координатных осей, обозначения которых следующие: а — вдоль волокон; r — радиальное направление поперек волокон; t — тангенциальное направление поперек волокон. Здесь упругие постоянные выражены через применяемые в технике показатели: модули упругости и сдвига Е и G, а также коэффициент поперечной деформации μ. При этом первый индекс у μ указывает направление поперечной деформации, второй — направление вызвавшего ее осевого усилия. Двойные индексы у G соответствуют направлениям, между которыми происходит изменение прямого угла. Таким образом, для установления связей между тензорами напряжений и деформаций необходимо 12 упругих постоянных, из которых 9 постоянных независимы.

Для крупных образцов (сортиментов) древесины, у которых нельзя пренебречь кривизной годичных слоев, есть основание применять схему трансверсальной изотропии. В этом случае предполагается, что в плоскости, перпендикулярной волокнам, упругие свойства одинаковы. Следовательно, учитываются различия только между свойствами вдоль и поперек волокон. Для такого трансверсально изотропного (транстропного) тела связь между тензорами напряжений и деформаций устанавливается при помощи пяти упругих постоянных. Между анизотропией упругих и прочностных свойств древесины существует тесная связь. Различают следующие режимы нагружения: статический, динамический, вибрационный и длительный. Последние два режима связаны с продолжительным приложением нагрузок. В этих условиях заметно проявляется зависимость деформаций древесины от времени.

Древесина, или точнее материал клеточных оболочек, представляет собой комплекс природных полимеров. Аморфные полимеры состоят из длинных гибких цепных молекул. Такая особенность строения полимеров определяет особый характер их поведения под нагрузкой. При приложении усилий к полимеру могут возникнуть следующие три вида деформаций: упругие деформации вследствие обратимого изменения средних междучастичных расстояний; высокоэластические деформации, связанные с обратимой перегруппировкой частиц (звеньев цепных молекул); при этом объем тела не изменяется; вязко-текучие деформации, обусловленные необратимым смещением молекулярных цепей; объем тела при этом также не изменяется.

Аморфные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязко-текучем. Каждое из этих состояний характеризуется комплексом физических свойств и в том числе преобладающим типом деформаций. Для первого состояния характерны обратимые упругие деформации, для второго — обратимые высокоэластические, для третьего — необратимые вязко-текучие. Переход полимеров из одного состояния в другое обычно происходит при изменении температуры, критические значения которой называются температурой стеклования tС и температурой текучести tT. Способность к увеличению деформации достигается не только путем повышения температуры, но и введением пластификатора.

Теоретическое исследование деформационных процессов полимеров проводится при помощи новой науки — реологии. Реология —наука, устанавливающая наиболее общие законы развития во времени деформаций и течения любых веществ. Различают феноменологическую и молекулярную реологию. Первая из них характеризует внешние проявления механических свойств материала под действием нагрузки во времени, вторая изучает молекулярный механизм деформаций.

Гуково тело символически изображено пружиной с модулем упругости Е2, Кельвиново тело — в виде параллельно соединенных пружин (модуль упругости Е1) и демпфера с жидкостью, имеющей коэффициент вязкости η). Зависимость, связывающая напряжения σ и деформации ε такой комбинированной модели.

При приложении нагрузки мгновенно появляется деформация σ/Н. Далее при постоянном напряжении σ = const возрастают эластические деформации по криволинейному закону, и при длительной выдержке деформация стремится к величине σ/Е. После разгрузки немедленно возвращается упругая деформация, а затем с течением времени полностью исчезает эластическая деформация. Таким образом, указанная модель отражает поведение тела, деформации которого вполне обратимы.

Из формулы видно, что поведение моделей и, следовательно, реальных тел можно описать при помощи соотношении, содержащих в общем случае напряжения, деформации и их производные по времени. Такие соотношения называются реологическими уравнениями; параметры, характеризующие модель (материал) называются реологическими коэффициентами, а напряжения и деформации — реологическими переменными.

Реологические кеэффициенты можно получить при двух основных видах испытаний: на ползучесть и релаксацию. В первом случае ведется наблюдение за величиной деформации образца, возникающей под действием мгновенно приложенного и постоянного на протяжении испытания напряжения. График зависимости деформации от времени при постоянном напряжении называется кривой ползучести. Во втором случае образцу мгновенно сообщается начальная деформация, которая на протяжении опыта поддерживается постоянной. При этом величина начальных напряжений уменьшается. График, отражающий зависимость напряжений от времени при постоянной деформации, называется кривой релаксации напряжений. Кроме того, реологические испытания часто проводят при постоянной скорости возрастания напряжений или при постоянной скорости деформации.

Носителем механических свойств древесины является высоко ориентированный, аморфный полимер-целлюлоза. Натуральная воздушно-сухая древесина находится в состоянии естественного за стеклования, возникшего в процессе биосинтеза. При деформировании древесины в этом состоянии можно выделить две области, границей между которыми служит напряжение. Во второй области появляются увеличенные деформации, которые называются вынужденными эластическими деформациями. В связи с этим напряжение σ1-2следует называть пределом вынужденной эластичности древесины. Увеличенные деформации состоят в основном из термообратимых остаточных деформаций. Если напряжения во второй области воздействуют на набухшую древесину, она выходит из состояния естественного за стеклования и приобретает высокоэластическое состояние. Высокоэластические деформации обратимы и в десятки раз превышают мгновенные упругие деформации натуральной древесины.

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены

Электромагнитные свойства древесины.

изделия из массива на заказ

Свойства древесины, проявляющиеся при воздействии электромагнитных излучений. Различные виды излучений, представляющих собой электромагнитные колебания, образуют спектр, охватывающий огромный диапазон длин волн. Наибольшую длину имеют радиоволны (от десятков километров до миллиметров). Действие на древесину этих видов излучений частично изложено при рассмотрении электрических свойств древесины. Ниже будут рассмотрены свойства древесины, проявляющиеся при действии излучений, занимающих остальную часть спектра и обладающих длиной волны от 400 мкм (микрометров) до 0,3 пм (пикометра) (1пикометр = 1 х 10-12 м).

электромагнитные свойства древесины – Инфракрасное излучение

При нагревании тел происходит преобразование тепловой энергии в лучистую энергию электромагнитных колебаний. При этом нагретые тела испускают невидимые инфракрасные лучи с длинами волн от 400 мкм до 0,76 мкм. Источником инфракрасных лучей могут быть обычные электрические лампы накаливания, специальные зеркальные лампы инфракрасного излучения, в которых рефлектором служит посеребренная изнутри верхняя часть стеклянной колбы лампы; газовые горелки, электронагревательные спирали и др. В обычных лампах накаливания большая часть излучения приходится на долю невидимых инфракрасных лучей: например, в пустотных лампах на видимое световое излучение расходуется только 7% энергии, на невидимое инфракрасное излучение — 86 % и потери энергии составляют — 7%.

Инфракрасные лучи обладают слабой проникающей способностью. Проницаемость древесины инфракрасными лучами с длиной волны от 5 до 6,5 мкм очень мала. Примерно 80% лучистой энергии отражается и сорбируется поверхностным слоем древесины толщиной 0,1 мм. Для образцов толщиной 0,3—0,5 мм из древесины дуба, березы, бука, ореха и ольхи в указанном диапазоне длин волн не было обнаружено сколько-нибудь заметных различий проницаемости. При большой толщине образцов (до 3 мм) проницаемость древесины оказалась практически одинаковой. Поглощение инфракрасных лучей сопровождается нагреванием материала. Это позволит использовать инфракрасные лучи для сушки тонких сортиментов древесины, а также для ее стерилизации. Кроме того, инфракрасное излучение используется для сушки лакокрасочных покрытий на древесине; скорость сушки при этом резко увеличивается.

электромагнитные свойства древесины – Световое излучение

Видимое световое излучение охватывает часть спектра с длинами волн от 0,76 до 0,38 мкм и включает последовательно красные, оранжевые, желтые, зеленые, голубые, синие и фиолетовые лучи. Световые лучи обладают большей проникающей способностью, чем инфракрасные, и могут быть использованы для обнаружения скрытых дефектов внутри древесины или изделий из нее. Например, перемещая лист клееной фанеры толщиной до 3 мм по столу над прорезью, освещенной сильным источником света (мощной лампой с рефлектором), можно обнаружить швы, сучки и трещины во внутреннем слое, а также дефекты склеивания (темные пятна указывают на места, где клей не связал листов шпона).

Если использовать чувствительную приемную аппаратуру, можно зафиксировать лучи света, прошедшие через образцы древесины осины, сосны, ели толщиной до 35 мм, а березы — до 15 мм. Как отмечалось ранее, при падении пучка световых лучей на поверхность древесины часть энергии отражается. Изменяя интенсивность отраженного светового потока, можно судить о древесной породе, качестве поверхности и наличии пороков, изменяющих окраску древесины. Важное преимущество световой дефектоскопии — полная безопасность для обслуживающего персонала.

Электромагнитные свойства древесины – Ультрафиолетовое излучение

Ультрафиолетовые лучи в спектре электромагнитных колебаний следуют за видимыми фиолетовыми лучами и имеют длины волн от 0,38 мкм до 10 нм (1 нанометр = 10-9 м = 10 А). Источником ультрафиолетовых лучей могут быть температурные и газоразрядные излучатели, открытые дуговые лампы и, наконец, естественный излучатель — солнце.

Особенность ультрафиолетового излучения заключается в способности вызывать свечение — люминесценцию некоторых веществ. Из-за наличия тепловых потерь при люминесценции в большинстве случаев испускается излучение с большей в среднем длиной волны, чем длина волны возбуждающих лучей. Каждое люминесцентное вещество дает излучение определенного спектрального состава. Свечение, которое исчезает сразу же после прекращения облучения объекта, называется флуоресценцией. Некоторые вещества обладают способностью светиться и после прекращения облучения. Такой вид свечения называется фосфоресценцией. Способность древесины большинства пород флуоресцировать в ультрафиолетовом свете была замечена давно. Из 150 древесных пород флуоресценция была обнаружена у подавляющего большинства пород (90%). Чаще всего облученная древесина светится фиолетовым светом (40% пород); синим или голубым светом — светится 25% пород; темно-фиолетовый цвет имеет свечение 15% пород и реже всего наблюдается желтое и зелено-желтое свечение (10%).

характеристика цвета и интенсивности флуоресценции древесины

Порода Цветовой тон (длина волны), нм Чистота, % Светлота, % Коэффициент яркости, %
Ель 496 3 7,5 3,5
Сосна, ядро 530 6 5,2 3,8
Пихта 595 32 10,5 13.6
Лиственница, ядро 602 6 10,0 7,25
Дуб, ядро 496 5 6,2 8,0
Береза 508 8 9,2 9,4
Осина 557 10 8,5 11,7

Цвет и интенсивность свечения зависят не только от породы, но и от состояния древесины (степени загнивания древесины, ее влажности и температуры, качества обработки поверхности и т. д.). Все это открывает возможности для использования люминесценции в качестве средства обнаруживания пороков древесины, контроля качества обработки и т. д. Люминофоры (светящиеся вещества) можно использовать для обнаруживания скрытых от глаза мелких поверхностных трещин. Порошкообразный люминофор сначала наносят на всю исследуемую поверхность, а затем удаляют мягкой щеткой. Оставшийся в трещинах люминофор при освещении ультрафиолетовыми лучами начинает светиться, обнаруживая место и размеры трещин.

электромагнитные свойства древесины – Рентгеновское излучение

Этот вид излучения появляется при торможении быстро движущихся электронов. Рентгеновское излучение охватывает часть спектра электромагнитных волн длиной примерно от 5 нм до 0,6 пм. Рентгеновские лучи способны вызывать свечение некоторых веществ, оказывать действие на фотоэмульсию, вызывать ионизацию газов и оказывать биохимическое действие на живые организмы. Рентгеновские лучи, проходя через исследуемый объект, по-разному поглощаются отдельными его участками. Чем выше плотность участка, тем меньше интенсивность прошедших через него лучей.

Расположив по ходу лучей за исследуемым объектом флуоресцирующий экран, можно наблюдать на нем внутренние дефекты объекта (пустоты, включения и т. д.). Такой метод исследования называется рентгеноскопией. Если вместо экрана использовать фотопленку (рентгенографию), можно не только получить изображения, характеризующие внутренние неоднородности (по плотности) объекта, но произвести количественные исследования. Рентгеновскими лучами могут быть просвечены крупные круглые сортименты (диаметром до 40—50 см); это позволяет просвечивать стволы растущих деревьев при помощи передвижных установок. При помощи рентгеновских лучей в древесине можно обнаружить ряд скрытых пороков — заросшие сучья, ходы насекомых, внутренние трещины, гнили, пустоты, а также металлические включения. Повышение влажности снижает проницаемость древесины рентгеновскими лучами. Это свойство может быть использовано для определения величины и характера распределения влажности по сечению сортимента в процессе сушки. Рентгеновские лучи применяются также для изучения тонкого строения клеточной оболочки.

электромагнитные свойства древесины – Ядерные излучения

Ядерные, или, как их часто называют, ионизирующие излучения, возникают при распаде радиоактивных веществ, делении атомов тяжелых ядер, ядерных реакциях. Различают следующие виды ядерных излучений: потоки заряженных частиц, электромагнитное излучение и потоки незаряженных частиц (нейтронов). Первые два вида излучений имеют своим источником радиоактивные вещества и называются радиоактивными. Источники нейтронных излучений — ядерные реакторы, различные ускорители элементарных частиц и препараты, содержащие смеси радиоактивных веществ с веществами, испускающими нейтроны.

Сердцевинные лучи оказывают существенное влияние на поглощение энергии излучения. Количество проникающей энергии больше, если направление плоского пучка гамма-квантов совпадает, с плоскостью сердцевинных лучей. С увеличением влажности поглощение энергии увеличивается по параболическому закону. Это дает возможность использовать γ-лучи для бесконтактного контроля влажности древесины. Увеличение плотности приводит к линейному возрастанию количества поглощенной энергии. Прямые, связывающие эти два фактора (поглощение и плотность древесины), для разных пород имеют различный наклон. Чем выше равномерность распределения плотности древесины (равноплотность) и выше абсолютная плотность древесины, тем больше тангенс угла наклона. Таким образом, у бука тангенс угла наклона прямой выше, чем у дуба (0,7345 и 0,3328), у березы больше, чем у сосны и ели (0,3368 и 0,2384). Следовательно, этим показателем (тангенсом угла наклона) можно количественно характеризовать равноплотность древесины. Ослабление γ-лучей увеличивается в зависимости от размеров материала, подчиняясь линейному закону. Гамма-лучи (γ) могут быть использованы для дефектоскопии древесины, определения ее плотности, влажности и размеров материала.

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Звуковые свойства древесины

изделия из массива на заказ

показатели, характеризующие распространение звука в древесине

Как известно, звук представляет собой колебания, волнообразно распространяющиеся в упругих средах. Особенности распространения звуковых колебаний зависят от физических свойств среды и характеризуются рядом показателей. Скорость распространения звука тем больше, чем меньше плотность среды р и выше ее жесткость (модуль упругости Е). При распространении волны в направлении колебательного движения частиц (продольные волны) твердых материалов между скоростью и физическими параметрами материала существует зависимость.

С наибольшей скоростью звук распространяется вдоль волокон, значительно медленнее в радиальном и еще медленнее в тангенциальном направлениях. Скорость распространения звука по разным направлениям в древесине некоторых пород приведена в табл. На основании данных этой таблицы можно принять, что звукопроводность вдоль волокон относится к звукопроводности в радиальном и тангенциальном направлениях в среднем, как 4 : 1. Однако абсолютные значения скоростей распространения звука для некоторых пород существенно отличались от данных, приведенных в табл. Так, скорость распространения колебаний в березе (вдоль волокон) оказалась равной 5190 м/сек. С возрастанием влажности и температуры скорость распространения звука в древесине значительно падает. Скорость распространения звука в других материалах такова: в железе 5000, меди 3710, пробке 430—530 м/сек. Как видим, скорость распространения звука в древесине вдоль волокон примерно такая же, как в металлах.

скорость распространения звука в древесине по разным направлениям

Порода Скорость распространения звука, м/сек
вдоль волокон в радиальном направлении в тангенциальном направлении
Сосна 5030 1450 850
Пихта 4600 1525 860
Ясень 5065 1510 1370
Дуб 4175 1665 1400
Клен 4450 1670 1125
Явор 4870 1625 1230
Береза 3625 1995 1535
Ольха 5060 1485 1135

Важной акустической характеристикой материала при оценке его способности отражать и проводить звук является удельное волновое сопротивление, определяемое произведением плотности на скорость звука. Данные об этом показателе приведены в табл.

величины акустического сопротивления некоторых материалов

Материал Скорость распространения звука, м/сек Плотность, г/см3 Акустическое сопротивление
Железо 5000 7,8 39000
Бетон 2200 2,2 4840
Кирпич 3600 1,5 5400
Стекло 5000 2,5 12500
Дуб 4200 0,7 2940
Ель 5000 0,45 2250
Пробка 430 0,24 103
Воздух 330 0,0013 0,43

По мере распространения звуковых волн в материале вследствие потерь энергии на внутреннее трение происходит затухание колебаний. При этом величина амплитуды уменьшается по экспоненциальному закону. Для характеристики скорости затухания колебаний и одновременно величины внутреннего трения материала используют безразмерный показатель — логарифмический декремент затухания, численно равный натуральному логарифму отношения двух амплитут, отделенных друг от друга интервалом в один период. Логарифмический декремент у хвойных пород в 1,3—1,7 раза меньше, чем у лиственных (у сосны и ели соответственно 207 • 10-4 и 222-10-4; у ясеня и бука 318 • 10-4 и 360 -10-4).

звукоизолирующая и звукопоглощающая способность древесины

Звукоизолирующая способность древесины характеризуется ослаблением давления прошедшего через нее звука. Звуковое давление возникает в газовой или жидкой среде при прохождении звуковых волн. Величина его может изменяться в очень широких пределах, поэтому для оценки уровня звукового давления применяют логарифмическую шкалу, в которой за начало отсчета принято давление на пороге слышимости. Уровень звукового давления измеряется в относительных логарифмических единицах — децибеллах. Для примера укажем, что уровень звукового давления, соответствующего обычному разговору, равен 60 дб, уличному шуму — 70—80 дб. При давлении 120 дб в слуховом аппарате человека возникают болевые ощущения.

Величина звукоизоляционной способности древесины может быть оценена по разнице уровней звукового давления перед и за перегородкой из древесины. Оценка звукоизоляционной способности материала часто также производится по относительному уменьшению силы звука, называемому коэффициентом звукопроницаемости. Так, при толщине 3 см звукоизоляция сосновой древесины составила 12 дб, коэффициент звукопроницаемости – 0,065, для дубовой древесины при толщине 4,5 см — соответственно 27 дб и 0,002.

По действующим строительным нормам звукоизоляция стен и перегородок должна быть не ниже 40 дб, междуэтажных перекрытий — 48 дб. Отсюда видно, что звукоизолирующая способность массивной древесины сравнительно невысока. Способность древесины поглощать звук вызвана рассеянием звуковой энергии в структурных полостях и необратимыми тепловыми потерями вследствие внутреннего трения. Строгое определение звукопоглощающей способности материалов сопряжено со значительными трудностями. Для практических целей используют коэффициент звукопоглощения, представляющий собой отношение звуковой энергии, теряемой в материале, к энергии плоской падающей волны. Коэффициент звукопоглощения сосновой перегородки толщиной 19 мм в диапазоне частот 100—4000 гц находится в пределах 0,081—0,110.

резонансная способность древесины

Способность древесины резонировать, т. е. усиливать звук без искажения топа, имеет очень важное значение в музыкальной промышленности при изготовлении дек музыкальных инструментов. Энергия, передаваемая деке струной, отчасти расходуется на трение внутри деки и по краям ее закрепления, отчасти излучается в виде звуковой энергии в окружающее пространство; эта последняя является полезной частью энергии. Для наибольшей отдачи энергии воздуху потери на внутреннее трение должны быть наименьшими, а излучение наибольшим. Комплекс акустических свойств древесины, определяющих возможность ее использования в качестве материала для изготовления дек музыкальных инструментов.

Этот показатель характеризует главным образом способность материала к звуковому излучению, поэтому его называют константой излучен и я, или акустической константой. Для определения этой константы устанавливают величину динамического модуля упругости (или статического модуля, который меньше примерно на 4%) и плотность древесины. В табл. 31 приведены значения акустической константы для древесины некоторых пород.

Эти данные показывают, что для изготовления дек музыкальных инструментов наиболее пригодна древесина ели, кавказской пихты и сибирского кедра, как обладающая наивысшей константой излучения; эти породы и включены в ГОСТ на заготовку резонансной древесины. Оптимальная ширина годичных слоев в резонансной древесине ели лежит в пределах 1—4 мм, оптимальная величина содержания поздней древесины в пределах 5—20%; резонансная древесина должна быть равнослойной (колебания в числе годичных слоев на двух соседних сантиметрах не должны превышать 30%). Между заболонью и спелой древесиной ели в акустическом отношении разницы нет. Крень снижает константу излучения вследствие повышения плотности и снижения модуля упругости, наклон волокон также отрицательно влияет на константу излучения (снижение на 6% при наклоне волокон 7 %; причина — уменьшение модуля упругости).

акустические константы древесины некоторых пород

Порода Влажность, % Плотность, г/см3 Модуль упругости при изгибе, 1000 кГ/см2 Константа излучения
Ель резонансная 10 0,42 110 1200
Пихта кавказская 10 0,45 130 1200
Кедр сибирский 10 0,38 80 1200
Пихта сибирская 10 0,38 60 1000
Сосна (отборная) 10 0,50 150 1100
Ясень 10 0,70 150 650
Бук 10 0,75 140 600
Береза 10 0,63 140 750
Клен полевой 12 0,70 110 580

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Электрические свойства древесины.

изделия из массива на заказ

электропроводность древесины

Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. приведены некоторые данные.

сравнительные данные об удельном объемном и поверхностном сопротивлении древесины

Порода и направление Влажность, % Удельное объемное сопротивление, ом х см Удельное поверхностное сопротивление, ом
Береза, вдоль волокон 8,2 4,2 х 1010 4,0 х 1011
Береза, поперек волокон 8,0 8,6 х 1011 2,8 х 1012
Бук, вдоль волокон 9,2 1,7 х 109 9,4 х 1010
Бук, поперек волокон 8,3 1,4 х 1010 7,9 х 1010

 

Для характеристики электропроводности наибольшее значение имеет удельное объемное сопротивление. Сопротивление сильно зависит от влажности древесины. С повышением содержания влаги в древесине сопротивление уменьшается. Особенно резкое снижение сопротивления наблюдается при увеличении содержания связанной влаги от абсолютно сухого состояния до предела гигроскопичности. При этом удельное объемное сопротивление уменьшается в миллионы раз. Дальнейшее увеличение влажности вызывает падение сопротивления лишь в десятки раз. Это иллюстрируют данные табл.

удельное объемное сопротивление древесины в абсолютно сухом состоянии

Порода Удельное объемное сопротивление, ом х см
поперек волокон вдоль волокон
Сосна 2,3 х 1015 1,8 х 1015
Ель 7,6 х 1016 3,8 х 1016
Ясень 3,3 х 1016 3,8 х 1015
Граб 8,0 х 1016 1,3 х 1015
Клен 6,6 х 1017 3,3 х 1017
Береза 5,1 х 1016 2,3 х 1016
Ольха 1,0 х 1017 9,6 х 1015
Липа 1,5 х 1016 6,4 х 1015
Осина 1,7 х 1016 8,0 х 1015

 влияние влажности на электрическое сопротивление древесины

Порода Удельное объемное сопротивление (ом х см) поперек волокон при влажности древесины (%)
0 22 100
Кедр 2,5 х 1014 2,7 х 106 1,8 х 105
Лиственница 8,6 х 1013 6,6 х 106 2,0 х 105

Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22—23° до 44—45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20—21° до 50° С — в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 107 ом см, а при охлаждении до температуры —24° С оно оказалось равным 1,02 х 108 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.

электрическая прочность древесины

Электрическая прочность имеет значение при оценке древесины как электро изолирующего материала и характеризуется пробивным напряжением в вольтах на 1 см толщины материала. Электрическая прочность древесины невысока и зависит от породы, влажности, температуры и направления. С увеличением влажности и температуры она снижается; вдоль волокон она значительно ниже, чем поперек. Данные об электрической прочности древесины вдоль и поперек волокон приведены в табл.

электрическая прочность древесины вдоль и поперек волокон

Порода Электрическая прочность, кв на 1 см толщины при влажности 7,5—9%
вдоль волокон в радиальном направлении в тангенциальном направлении
Бук 14,0 41,5 52,0
Береза 15,2 59,8
Ольха 56,4 60,5
Дуб 39,1 47,0

При влажности древесины сосны 10% получено следующую электрическую прочность в киловольтах на 1 см толщины: вдоль волокон 16,8; в радиальном направлении 59,1; в тангенциальном направлении 77,3 (определение производилось на образцах толщиной 3 мм). Как видим, электрическая прочность древесины вдоль волокон примерно в 3,5 раза меньше, чем поперек волокон; в радиальном направлении прочность меньше, чем в тангенциальном, так как сердцевинные лучи уменьшают пробивное напряжение. Повышение влажности с 8 до 15% (вдвое) снижает электрическую прочность поперек волокон примерно в 3 раза (в среднем для бука, березы и ольхи).

Электрическая прочность (в киловольтах на 1 см толщины) .других материалов следующая: слюды 1500, стекла 300, бакелита 200, парафина 150, трансформаторного масла 100, фарфора 100. С целью повышения электрической прочности древесины и снижения электропроводности при использовании в электропромышленности в качестве изолятора ее пропитывают олифой, трансформаторным маслом, парафином, искусственными смолами; эффективность такой пропитки видна из следующих данных о древесине березы: пропитка олифой увеличивает пробивное напряжение вдоль волокон на 30%, трансформаторным маслом — на 80%, парафином — почти вдвое по сравнению с пробивным напряжением для воздушно-сухой не пропитанной древесины.

диэлектрические свойства древесины

Величина, показывающая, во сколько раз увеличивается емкость конденсатора, если воздушную прослойку между пластинами заменить такой же толщины прокладкой из данного материала, называется диэлектрической проницаемостью этого материала. Диэлектрическая проницаемость (диэлектрическая постоянная) для некоторых материалов приведена в табл.

диэлектрическая проницаемость некоторых материалов

Материал Диэлектрическая проницаемость Древесина Диэлектрическая проницаемость
Воздух 1,00 Ель сухая: вдоль волокон 3,06
в тангенциальном направлении 1,98
Парафин 2,00
в радиальном направлении 1,91
Фарфор 5,73
Слюда 7,1—7,7 Бук сухой: вдоль волокон 3,18
в тангенциальном направлении 2,20
Мрамор 8,34
в радиальном направлении 2,40
Вода 80,1

Данные для древесины показывают заметное различие между диэлектрической проницаемостью вдоль и поперек волокон; в то же время диэлектрическая проницаемость поперек волокон в радиальном и тангенциальном направлении различается мало. Диэлектрическая проницаемость в поле высокой частоты зависит от частоты тока и влажности древесины. С увеличением частоты тока диэлектрическая проницаемость древесины бука вдоль волокон при влажности от 0 до 12% уменьшается, что особенно заметно для влажности 12%. С увеличением влажности древесины бука диэлектрическая проницаемость вдоль волокон увеличивается, что особенно заметно при меньшей частоте тока.

В поле высокой частоты древесина нагревается; причина нагрева — потери на джоулево тепло внутри диэлектрика, происходящие под влиянием переменного электромагнитного поля. На этот нагрев расходуется часть подводимой энергии, величина которой характеризуется тангенсом угла потерь.

 

Тангенс угла потерь зависит от направления поля в отношении волокон: вдоль волокон он примерно вдвое больше, чем поперек волокон. Поперек волокон в радиальном и тангенциальном направлении тангенс угла потерь мало различается. Тангенс угла диэлектрических потерь, как и диэлектрическая проницаемость, зависит от частоты тока и влажности древесины. Так, для абсолютно сухой древесины бука тангенс угла потерь вдоль волокон с увеличением частоты сначала увеличивается, достигает максимума при частоте 107 гц, после чего начинает снова снижаться. В то же время при влажности 12% тангенс угла потерь с увеличением частоты резко падает, достигает минимума при частоте 105 гц, затем так же резко увеличивается.

максимальная величина тангенса угла потерь для сухой древесины

Порода Тангенс угла потерь х 10-4
вдоль волокон в тангенциальном направлении в радиальном направлении
Ель 625 345 310
Бук 585 298 319

 

С увеличением влажности древесины бука тангенс угла потерь вдоль волокон резко растет при малой (3 х 102 гц) и большой (109 гц) частоте и почти не меняется при частоте 106—107 гц.

 

Путем сравнительного исследования диэлектрических свойств древесины сосны и полученных из нее целлюлозы, лигнина и смолы было установлено, что эти свойства определяются в основном целлюлозой. Нагрев древесины в поле токов высокой частоты находит применение в процессах сушки, пропитки и склеивания.

пьезоэлектрические свойства древесины

На поверхности некоторых диэлектриков под действием механических напряжений появляются электрические заряды. Это явление, связанное с поляризацией диэлектрика, носит название прямого пьезоэлектрического эффекта. Пьезоэлектрические свойства были вначале обнаружены у кристаллов кварца, турмалина, сегнетовой соли и др. Эти материалы обладают также обратным пьезоэлектрическим эффектом, заключающимся в том, что размеры их изменяются под действием электрического поля. Пластинки из этих кристаллов находят широкое применение в качестве излучателей и приемников в ультразвуковой технике.

Эти явления обнаруживаются не только у монокристаллов, но и у целого ряда других анизотропных твердых материалов, названных пьезоэлектрическими текстурами. Пьезоэлектрические свойства были обнаружены также в древесине. Было установлено, что основной носитель пьезоэлектрических свойств в древесине — ее ориентированный компонент — целлюлоза. Интенсивность поляризации древесины пропорциональна величине механических напряжений от приложенных внешних усилий; коэффициент пропорциональности называется пьезоэлектрическим модулем. Количественное изучение пьезоэлектрического эффекта, таким образом, сводится к определению значений пьезоэлектрических модулей. В связи с анизотропией механических и пьезоэлектрических свойств древесины указанные показатели зависят от направления механических усилий и вектора поляризации.

Наибольший пьезоэлектрический эффект наблюдается при сжимающей и растягивающей нагрузках под углом 45° к волокнам. Механические напряжения, направленные строго вдоль или поперек волокон, не вызывают в древесине пьезоэлектрического эффекта. В табл. приведены значения пьезоэлектрических модулей для некоторых пород. Максимальный пьезоэлектрический эффект наблюдается в сухой древесине, с увеличением влажности он уменьшается, а затем и совсем исчезает. Так, уже при влажности 6—8% величина пьезоэлектрического эффекта очень мала. С повышением температуры до 100° С величина пьезоэлектрического модуля увеличивается. При малой упругой деформации (высоком модуле упругости) древесины пьезоэлектрический модуль уменьшается. Пьезоэлектрический модуль зависит также от ряда других факторов; однако наибольшее влияние на его величину оказывает ориентация целлюлозной составляющей древесины.

пьезоэлектрические модули древесины

Порода Пьезоэлектрические модули в 108 абсолютных электростатических единиц по образцам
радиальным тангенциальным
Сосна 0,392 0,578
Ель 0,550 0,570
Дуб 0,254 0,534
Береза 0,470 0,620

 

Открытое явление позволяет глубже изучить тонкую структуру древесины. Показатели пьезоэлектрического эффекта могут служить количественными характеристиками ориентации целлюлозы и поэтому очень важны для изучения анизотропии натуральной древесины и новых древесных материалов с заданными в определенных направлениях свойствами.

Механические свойства древесины.

общие сведения о механических свойствах древесины При использовании древесины в качестве конструкционного и поделочного материала, а также в технологических процессах обработки проявляются ее механические свойства, характеризующие способность древесины сопротивляться механическим усилиям. Показатели этих свойств древесины определяют путем специальных экспериментов — механических испытаний, при которых создают различные напряженные и деформированные состояния образцов древесины. Задачи механических испытаний […]

нет комментариев

Электромагнитные свойства древесины.

Свойства древесины, проявляющиеся при воздействии электромагнитных излучений. Различные виды излучений, представляющих собой электромагнитные колебания, образуют спектр, охватывающий огромный диапазон длин волн. Наибольшую длину имеют радиоволны (от десятков километров до миллиметров). Действие на древесину этих видов излучений частично изложено при рассмотрении электрических свойств древесины. Ниже будут рассмотрены свойства древесины, проявляющиеся при действии излучений, занимающих остальную часть […]

нет комментариев

Звуковые свойства древесины

показатели, характеризующие распространение звука в древесине Как известно, звук представляет собой колебания, волнообразно распространяющиеся в упругих средах. Особенности распространения звуковых колебаний зависят от физических свойств среды и характеризуются рядом показателей. Скорость распространения звука тем больше, чем меньше плотность среды р и выше ее жесткость (модуль упругости Е). При распространении волны в направлении колебательного движения частиц […]

нет комментариев

Электрические свойства древесины.

электропроводность древесины Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное […]

нет комментариев

Тепловые свойства древесины

теплоемкость древесины Способность древесины поглощать тепло характеризуется теплоемкостью. В качестве меры используется удельная теплоемкость с, которая представляет собой количество тепла, необходимое для того, чтобы нагреть древесину массой 1 кг на 1о С. Размерность удельной теплоемкости — ккал/кг х град или в международной системе единиц СИ-дж/кг х град. В пределах изменения температуры от 0 до 100° […]

нет комментариев

Влажность древесины

влага в древесине Наличие влаги в древесине обусловлено нормальной жизнедеятельностью живого растущего организма. В древесине срубленного дерева содержание влаги (в зависимости от условий хранения, и эксплуатации изделий) может увеличиваться или уменьшаться. В большинстве случаев практики влагу из древесины удаляют, чтобы избежать ряда отрицательных явлений. Для количественной характеристики содержания влаги в древесине используют показатель влажности древесины. […]

нет комментариев

Физические свойства древесины

Свойства древесины, проявляющиеся при взаимодействии ее с внешней средой, но не связанные с изменением химического состава древесинного вещества, принято называть физическим. Из этого обширного ряда свойств несколько условно выделяются свойства древесины, обнаруживающиеся под действием механических усилий. Ниже рассматриваются физические свойства, показатели которых определяются методами, регламентированными действующими стандартами. Кроме того, освещается ряд пока мало распространенных, но […]

нет комментариев

Химические свойства древесины

химический состав древесины Древесина состоит из органических веществ, в состав которых входят углерод С, водород Н, кислород О и немного азота. Элементарный химический состав древесины разных пород практически одинаков. В среднем абсолютно сухая древесина независимо от породы содержит 49,5% углерода, 44,2% кислорода (с азотом) и 6,3% водорода. Азота в древесине содержится около 0,12%. Элементарный химический […]

нет комментариев

Макроскопическое строение древесины

макроскопическое строение древесины – заболонь, ядро, спелая древесина У большинства наших лесных пород древесина окрашена в светлые цвета, причем у одних пород нет разницы в окраске всей массы древесины, а у других — периферическая, прилегающая к коре часть древесины окрашена светлее. Эта более светлая часть ствола называется заболонью. Центральная темноокрашенная часть ствола называется ядром (см. […]

нет комментариев

Строение древесины

строение древесины – части растущего дерева Растения делятся на низшие и высшие. К низшим относятся бесстебельные растения: бактерии, водоросли, грибы, лишайники. К высшим растениям принадлежат мхи, папоротники, голосемянные и покрытосемянные. Древесные растения, которые дают древесину как материал для разнообразного применения, входят в состав двух последних групп. Широко распространенные на территории России хвойные породы относятся к […]

нет комментариев

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Тепловые свойства древесины

изделия из массива на заказ

теплоемкость древесины

Способность древесины поглощать тепло характеризуется теплоемкостью. В качестве меры используется удельная теплоемкость с, которая представляет собой количество тепла, необходимое для того, чтобы нагреть древесину массой 1 кг на 1о С. Размерность удельной теплоемкости — ккал/кг х град или в международной системе единиц СИ-дж/кг х град.

В пределах изменения температуры от 0 до 100° удельная теплоемкость абсолютно сухой древесины равна от 0,374 до 0,440 ккал/кг х град и в среднем равна 0,4 ккал /кг х град. При увлажнении теплоемкость древесины увеличивается, так как удельная теплоемкость воды (1,0 ккал/кг х град) больше теплоемкости абсолютно сухой древесины. При положительной температуре (выше 0°С) влияние влажности сказывается в большей мере, чем при отрицательной температуре.Например, увеличение влажности с 10 до 120% при температуре + 20° приводит к повышению теплоемкости на 70%; изменение влажности в тех же пределах, но при температуре -20°С вызывает увеличение теплоемкости всего на 15%; это объясняется меньшей теплоемкостью льда (0,5ккал/кг х град).

Пример 1. Определить при помощи диаграммы рис. 42 теплоемкость древесины при t=20° и влажности 60%. Точка пересечения вертикальной линии, соответствующей данной температуре, с горизонтальной линией для указанной влажности находится на наклонной кривой линии 0,66. Следовательно, удельная теплоемкость древесины при заданных условиях составляет 0,66 ккал/кг х град.

Пример 2. Определить теплоемкость мерзлой древесины при t = -10° и влажности 80%. Проводим вертикальную линию через точку, соответствующую -10°, (слева от нуля на оси температур) до пересечения с горизонтальной линией, соответствующей влажности 80%. Точка пересечения находится между двумя наклонными прямыми линиями 0,50 и 0,55. На глаз оцениваем положение точки от этих линий и находим, что удельная теплоемкость древесины при указанном состоянии равна 0,52 ккал/кг х град.

теплопроводность древесины

Теплопроводность определяет способность древесины проводить тепло и характеризуется коэффициентом теплопроводности λ, который представляет собой количество тепла, проходящего в течение 1 ч через плоскую стенку площадью 1 м2 и толщиной 1 м при разности температур на противоположноных сторонах стенки 1° С. Размерность теплопроводности ккал/м ч х град) или, в системе СИ, вт/м. х град. Вследствие пористого строения древесины теплопроводность невысока. С увеличением плотности теплопроводность древесины возрастает. Так как теплопроводность воды при одинаковой температуре в 23 раза меньше теплопроводности воздуха, теплопроводность древесины в сильной мере зависит от влажности, увеличиваясь, с ее возрастанием. С увеличением температуры теплопроводность древесины возрастает, причем это увеличение в большей мере выражено у влажной древесины. Теплопроводность древесины вдоль волокон значительно больше, чем поперек волокон.

В плоскости поперек волокон теплопроводность также зависит от направления, причем соотношение между теплопроводностью в радиальном λR и тангенциальном λт направлениях у разных пород различное. На величину этого соотношения оказывают влияние объем сердцевинных лучей и содержание поздней древесины. У пород с многочисленными сердцевинными лучами (дуб) λr>λг; у хвойных пород с небольшим объемом сердцевинных лучей, но имеющих высокий процент поздней древесины (лиственница), λтr. У лиственных пород с равномерным строением годичных слоев и сравнительно малочисленными короткими сердцевинными лучами, а также у остальных хвойных пород λr мало отличается от λт.

значения коэффициента Кр, учитывающего изменение теплопроводности древесины от плотности

Условная плотность, кг 1м3 Кр Условная плотность, кг 1м3 Кр
340 0,98 500 1,22
360 1,00 550 1,36
380 1,02 600 1,56
400 1,05 650 1,86
450 1,12

В табл. приведены значения коэффициента, учитывающего условную плотность древесины. Коэффициент Кх в тангенциальном направлении поперек волокон для всех пород принят равным 1,0, а в радиальном — 1,15; вдоль волокон для хвойных и рассеяннососудистых пород — 2,20, а для кольцесосудистых — 1,60.

Пример. Определить теплопроводность березы вдоль волокон при температуре 50°С и влажности 70%. По диаграмме рис. 43 находим, что номинальное значение теплопроводности при указанном состоянии древесины равно 0,22 ккал/м х ч х град. По табл. 19 определяем условную плотность березы русл = 500 кг/м3. По табл. 20 находим величину коэффициента КР = 1,22. Значение коэффициента Кх в данном случае равно 2,20.

температуропроводность древесины

Температуропроводность определяет способность древесины выравнивать температуру по своему объему. Коэффициент температуропроводности а характеризует скорость распространения температуры внутри тела при нестационарных тепловых процессах (нагревании, охлаждении) . Размерность его м2/ч, или, в системе СИ, м2/сек. Между тремя основными теплофизическими характеристиками существует следующая зависимость: а = λ/ср.

Температуропроводность зависит главным образом от влажности древесины и в меньшей степени температуры. С увеличением влажности температуропроводность древесины падает; это объясняется тем, что температуропроводность воздуха значительно больше, чем воды. На диаграмме рис. 44 показано влияние влажности на температуропроводность древесины сосны в трех направлениях. На диаграмме, кроме того, видно, что температуропроводность вдоль волокон значительно больше, чем поперек волокон, а между температуропроводностью в радиальном и тангенциальном направлениях разница оказывается очень небольшой. С повышением температуры температуропроводность древесины возрастает. Чем выше плотность древесины, тем ниже температуропроводность.

температурные деформации древесины

Температурные деформации древесины характеризуются коэффициентом линейного расширения а (изменение единицы длины при нагревании на 1°С), который для древесины имеет малую величину и зависит от направления по отношению к волокнам; расширение от тепла наименьшее вдоль волокон и наибольшее поперек волокон в тангенциальном направлении. Коэффициенты линейного расширения древесины вдоль волокон в 7—10 раз меньше, чем поперек волокон. Незначительная величина линейного расширения древесины вдоль волокон от тепла позволяет в практике не считаться с этим явлением (отказ от тепловых швов).

коэффициенты линейного расширения поперек волокон

Порода Коэффициент линейного расширения а поперек волокон в направлении
радиальном тангенциальном
Береза 27,9 х 10-6 33,7 х 10-6
Сосна 29,7 х 10-6 31,3 х 10-6
Осина 26,0 х 10-6 35,9 х 10-6

 

Механические свойства древесины.

общие сведения о механических свойствах древесины При использовании древесины в качестве конструкционного и поделочного материала, а также в технологических процессах обработки проявляются ее механические свойства, характеризующие способность древесины сопротивляться механическим усилиям. Показатели этих свойств древесины определяют путем специальных экспериментов — механических испытаний, при которых создают различные напряженные и деформированные состояния образцов древесины. Задачи механических испытаний […]

нет комментариев

Электромагнитные свойства древесины.

Свойства древесины, проявляющиеся при воздействии электромагнитных излучений. Различные виды излучений, представляющих собой электромагнитные колебания, образуют спектр, охватывающий огромный диапазон длин волн. Наибольшую длину имеют радиоволны (от десятков километров до миллиметров). Действие на древесину этих видов излучений частично изложено при рассмотрении электрических свойств древесины. Ниже будут рассмотрены свойства древесины, проявляющиеся при действии излучений, занимающих остальную часть […]

нет комментариев

Звуковые свойства древесины

показатели, характеризующие распространение звука в древесине Как известно, звук представляет собой колебания, волнообразно распространяющиеся в упругих средах. Особенности распространения звуковых колебаний зависят от физических свойств среды и характеризуются рядом показателей. Скорость распространения звука тем больше, чем меньше плотность среды р и выше ее жесткость (модуль упругости Е). При распространении волны в направлении колебательного движения частиц […]

нет комментариев

Электрические свойства древесины.

электропроводность древесины Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное […]

нет комментариев

Тепловые свойства древесины

теплоемкость древесины Способность древесины поглощать тепло характеризуется теплоемкостью. В качестве меры используется удельная теплоемкость с, которая представляет собой количество тепла, необходимое для того, чтобы нагреть древесину массой 1 кг на 1о С. Размерность удельной теплоемкости — ккал/кг х град или в международной системе единиц СИ-дж/кг х град. В пределах изменения температуры от 0 до 100° […]

нет комментариев

Влажность древесины

влага в древесине Наличие влаги в древесине обусловлено нормальной жизнедеятельностью живого растущего организма. В древесине срубленного дерева содержание влаги (в зависимости от условий хранения, и эксплуатации изделий) может увеличиваться или уменьшаться. В большинстве случаев практики влагу из древесины удаляют, чтобы избежать ряда отрицательных явлений. Для количественной характеристики содержания влаги в древесине используют показатель влажности древесины. […]

нет комментариев

Физические свойства древесины

Свойства древесины, проявляющиеся при взаимодействии ее с внешней средой, но не связанные с изменением химического состава древесинного вещества, принято называть физическим. Из этого обширного ряда свойств несколько условно выделяются свойства древесины, обнаруживающиеся под действием механических усилий. Ниже рассматриваются физические свойства, показатели которых определяются методами, регламентированными действующими стандартами. Кроме того, освещается ряд пока мало распространенных, но […]

нет комментариев

Химические свойства древесины

химический состав древесины Древесина состоит из органических веществ, в состав которых входят углерод С, водород Н, кислород О и немного азота. Элементарный химический состав древесины разных пород практически одинаков. В среднем абсолютно сухая древесина независимо от породы содержит 49,5% углерода, 44,2% кислорода (с азотом) и 6,3% водорода. Азота в древесине содержится около 0,12%. Элементарный химический […]

нет комментариев

Макроскопическое строение древесины

макроскопическое строение древесины – заболонь, ядро, спелая древесина У большинства наших лесных пород древесина окрашена в светлые цвета, причем у одних пород нет разницы в окраске всей массы древесины, а у других — периферическая, прилегающая к коре часть древесины окрашена светлее. Эта более светлая часть ствола называется заболонью. Центральная темноокрашенная часть ствола называется ядром (см. […]

нет комментариев

Строение древесины

строение древесины – части растущего дерева Растения делятся на низшие и высшие. К низшим относятся бесстебельные растения: бактерии, водоросли, грибы, лишайники. К высшим растениям принадлежат мхи, папоротники, голосемянные и покрытосемянные. Древесные растения, которые дают древесину как материал для разнообразного применения, входят в состав двух последних групп. Широко распространенные на территории России хвойные породы относятся к […]

нет комментариев

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Влажность древесины

изделия из массива на заказ

влага в древесине

Наличие влаги в древесине обусловлено нормальной жизнедеятельностью живого растущего организма. В древесине срубленного дерева содержание влаги (в зависимости от условий хранения, и эксплуатации изделий) может увеличиваться или уменьшаться. В большинстве случаев практики влагу из древесины удаляют, чтобы избежать ряда отрицательных явлений. Для количественной характеристики содержания влаги в древесине используют показатель влажности древесины. Под влажностью (абсолютной) древесины понимают выраженное в процентах отношение массы влаги, содержащейся в данном объеме древесины, к массе сухой древесины

Для измерения влажности древесины применяют прямые и косвенные методы. Прямые методы основаны на выделении тем или иным способом влаги из древесины. Влагу можно отделить путем высушивания и определить влажность с высокой точностью, осуществляя следующую процедуру. В лабораторных условиях небольшие образцы древесины взвешивают на аналитических весах с точностью до 0,001 г и определяют начальную массу. С такой точностью взвешивают образцы, если масса их не превышает 5—6 г. Для того чтобы влажность образцов древесины во время взвешивания не изменялась, их помещают в стеклянные бюксы с притертыми крышками. Масса каждой бюксы определяется заранее на тех же весах. Образцы находятся в бюксах (но с открытыми крышками) и во время высушивания.

Образец высушивают в сушильных шкафах, представляющих собой обогреваемые камеры с автоматическими регуляторами температуры. Из большого разнообразия конструкций сушильных шкафов наилучшими эксплуатационными свойствами обладают электрические шкафы, которые и находят повсеместное применение. Высушивание проводится при температуре воздуха 103±2°С; бюксы с образцами находятся в шкафу до тех пор, пока не будет достигнуто постоянное значение массы, устанавливаемое контрольными определениями при помощи весов. Если разница в отсчетах по весам при двух последних с интервалом 1—2 ч определениях составляет менее 0,002 г, считают, что достигнуто абсолютно сухое состояние древесины. Перед каждым определением массы бюксы закрывают крышками и охлаждают в сухом воздухе в эксикаторах — сосудах с безводным хлористым кальцием или серной кислотой при концентрации 94—100%.

В производственных условиях (на складах, в сушильных камерах и пр.) обычно ограничиваются меньшей точностью: пробу берут массой примерно 50 г, взвешивают с точностью до 0,1 г, а влажность подсчитывают с точностью до 1%.

Пробу из доски или бруска вырезают в этих случаях, отступя 0,5 м от торца и захватывая все сечение. Описанный простой и надежный способ определения влажности нашел широкое применение. Значительно реже применительно к древесине используется другой прямой метод, основанный на отгонке влаги с парами толуола (метод дистилляции). По этому методу сначала при помощи весов определяется масса образца влажной древесины. Затем образец нагревается с толуолом; образующиеся пары конденсируются, благодаря разной плотности жидкостей вода легко отделяется от толуола и можно измерить ее объем (массу). Зная массу влажной древесины и массу содержащейся в ней влаги, можно определить влажность древесины в процентах. Основной недостаток прямых методов заключается в том, что продолжительность процедуры очень велика. При методе высушивания она занимает 8—10 ч, а иногда и более. Этого недостатка лишены косвенные методы.

Косвенные методы определения влажности основаны на измерении показателей других физических свойств древесины, которые функционально зависят от содержания влаги в древесине. Поскольку влага оказывает влияние по существу на все физические свойства древесины, косвенных методов измерения влажности древесины может быть очень много. Однако не все из них могут быть с равным успехом использованы для создания быстродействующих, точных, простых по конструкции и удобных, в эксплуатации приборов — влагомеров. Для создания влагомеров очень широко используются достаточно строгие зависимости между влажностью и электрическими параметрами древесины. Наибольшее распространение получили кондуктометрические электровлагомеры, основанные на измерении электропроводности древесины.

Влагомер ЦНИИМОД-2 предназначен для измерения влажности древесины от 8 до 30%. Шкала прибора состоит из пяти диапазонов с пределами 8—11; 9—12; 15—21; 19—29% влажности. Принцип действия влагомера основан на определении времени зарядки конденсатора постоянным током, проходящим через древесину, сопротивление которой связано обратной логарифмической зависимостью с влажностью. Контакт с древесиной осуществляется при помощи датчика с тремя игольчатыми электродами, которые вводят через боковую (не торцовую) поверхность в древесину на полную их длину (8 мм). Время, необходимое для определения влажности этим прибором, составляет всего лишь несколько минут. Точность измерения влажности равна ±1,5%. Электровлагомер ЭВ-8-100 основан на измерении активного сопротивления влажной древесины по схеме моста постоянного тока. Этот прибор позволяет измерять влажность в более широких пределах. Каждому из трех диапазонов (8—18%, 18—31% и 30—100%) соответствует своя мостовая схема. Точность измерения влажности влагомером на первом и втором диапазонах составляет около±1%. При влажности свыше 30% точность значительно ниже (до ±10%).

К недостаткам этих приборов, помимо меньшей точности (по сравнению с методом высушивания), относится также и то, что они дают значения локальной влажности древесины в месте введения игольчатых контактов. При обычно неравномерном распределении влажности по объему доски или заготовки этот недостаток может быть причиной дополнительных погрешностей в определении интегральной влажности древесины.

Известны также емкостные электровлагомеры, при помощи которых по емкости конденсатора с диэлектриком из древесины определяется зависящая от влажности диэлектрическая проницаемость древесины. Разработаны конструкции индуктивных электровлагомеров, позволяющие определять влажность калиброванных образцов древесины бесконтактным способом. Эти приборы основаны на измерении индуктивности или добротности контура катушки самоиндукции с сердечником из влажной древесины. Влажность древесины может быть измерена при помощи тепловых методов. Например, в качестве измеряемого параметра может быть время, необходимое для нагрева до определенной температуры одного из спаев термопары, заделанного в древесину. Чем меньше влажность древесины, тем меньше отвод тепла от нагреваемого слоя ее: следовательно, при низкой влажности потребная продолжительность нагрева окажется меньшей.

В процессе сушки древесины влажность на конечном этапе может быть измерена по температуре материала. Некоторые исследователи предлагают измерять влажность по проницаемости древесины для рентгеновского, бета- и гамма-излучения. Различают две формы влаги, содержащейся в древесине: связанную (или гигроскопическую) и свободную. Связанная (адсорбционная и микрокапиллярная) влага находится в толще клеточных оболочек, свободная влага содержится в полостях клеток и в межклеточных пространствах. Связанная влага удерживается в основном физико-химическими связями; ее удаление сопряжено со значительными затратами энергии и существенно отражается на большинстве свойств древесины. Свободная влага удерживается только физико-механическими связями, удаляется значительно легче и оказывает меньшее влияние на свойства древесины. Состояние древесины, при котором в клеточных оболочках содержится максимальное количество связанной влаги, а свободной влаги нет, называется пределом гигроскопичностиWnr.

Влажность, соответствующую пределу гигроскопичности Wnr, в среднем для всех пород при комнатной температуре принято считать равной 30 % W nr: для сосны и дуба 30%, кедра сибирского 28—30%, лиственницы сибирской 31 — 33 %. При пределе гигроскопичности влажность существенно зависит от способа определения. Этот критерий можно определять но только непосредственным путем, измеряя максимальное количество поглощенной связанной влаги, но и по косвенным признакам, поскольку при пределе гигроскопичности резко изменяется характер зависимости между показателями многих свойств древесины и влажностью.

Влажность Wnr заметно зависит от температуры; так у древесины ели при температуре 20° она оказалась равной 31%. а при температуре 100° — всего 23%; аналогичные данные получены и для сосны. Наблюдается также некоторая зависимость влажности Wnr от химического состава древесины: с увеличением содержания лигнина влажность при пределе гигроскопичности уменьшается. Различают следующие степени влажности древесины: мокрая, долгое время пробывшая в воде (больше 100%); свежесрубленная (50—100 %); воздушносухая, долгое время пролежавшая на воздухе (15—20%, в зависимости от климатических факторов и времени года); комнатносухая (8—12%); абсолютно сухая (около 0%). Распределение влаги в стволе растущего дерева неравномерно как по сечению, так и по высоте. У хвойных пород влажность заболони в 3—4 раза выше влажности ядра и спелой древесины. Так, у сосны и ели Ленинградской области среднегодовая влажность заболони оказалась 112 и 122%, влажность ядра или спелой древесины — 33 и 38%.

Древесина хвойных пород Восточной Сибири показала, что в пределах ядра (спелой древесины) влажность у сосны, ели и лиственницы распределена равномерно. В то же время у пихты влажность центральной зоны спелой древесины намного выше, чем периферической. То же наблюдается у кедра. Разница между влажностью центральной и периферической зон ядра достигает в нижней части ствола 50%.

У лиственных пород как ядровых (дуб, ясень, ильм), так и безъядровых (береза, осина, липа) существенной разницы между заболонью и ядром или периферической и центральной частями ствола не наблюдается; оказалось, что влажность заболони дуба из Воронежской области 73%, ядра 71%; вяза соответственно 72 и 97%, ивы белой 82 и 72%, у ясеня влажность ядра и заболони оказалась одинаковой — около 35 %; среднегодовая влажность периферической части ствола березы и осины из Ленинградской области 70 и 92%, центральной — 82 и 91%.

По высоте ствола влажность заболони в хвойных породах увеличивается в направлении от комля к вершине (например, у сосны Красноярского края VI класса возраста влажность заболони на высоте 1,3 м оказалась 120%, на высоте 6 м— 134% и на высоте 12 м — 146%), а влажность ядра остается практически без изменения. В стволах ядровых лиственных пород (дуба, ясеня, вяза, ильма) влажность ядра по направлению от комля к вершине слегка понижается, а влажность заболони почти не изменяется, у лиственных безъядровых пород (осины, липы) влажность увеличивается от комля к вершине. Влажность в стволах молодых деревьев несколько выше и ее колебания в течение года больше, чем у старых; это объясняется, по-видимому, тем, что древесина молодых деревьев полностью или преимущественно заболонная.

Изменения влажности древесины в стволах растущих деревьев по временам года в Ленинградской области показаны на рис. 32. Кроме сезонных изменений, влажность в стволах растущих деревьев подвержена суточным колебаниям: так, в заболони ели утром наблюдалась влажность 186%, в полдень 132% и вечером 150%; в заболони дуба утром (в августе) 68%, в полдень 72%, вечером 66%, ночью 71%. Данные показывают, что максимум влаги в стволе растущего дерева содержится в зимний период (ноябрь—февраль), минимум — в летний (июль—август), причем в ядровых и спелодревесных хвойных породах меняется только влажность заболони за счет увеличения или уменьшения свободной влаги. Так как свободная влага легко испаряется, можно считать, что изменения влажности растущего дерева для времени рубки значения не имеют.

сушка древесины

Влажность древесины, находящейся на открытом воздухе или в помещении, постепенно уменьшается. Сначала испаряется преимущественно свободная влага, находящаяся в полостях клеток, а затем связанная. Процесс высыхания древесины заключается в испарении влаги с поверхности и перемещении ее из внутренних, более влажных слоев к наружным. Испарение влаги с поверхности древесины происходит быстрее, чем продвижение ее изнутри к периферии; это обусловливает неравномерность распределения влажности. В тонких пиломатериалах эта неравномерность обычно невелика и быстро уменьшается, но в толстых сортиментах влажность выравнивается медленно и неравномерность ее распределения в начале высыхания может быть очень значительной. Изменение влажности древесины по толщине, ширине или длине сортимента называется градиентом влажности.

Механизм перемещения влаги в древесине в процессе ее высыхания различен при влажности выше и ниже предела гигроскопичности Wn.r. При влажности ниже предела гигроскопичности, когда в древесине есть только связанная влага, скорость ее передвижения пропорциональна градиенту влажности и коэффициенту влагопроводности. Влагопроводность определяет способность древесины проводить связанную влагу, а коэффициент влагопроводности характеризует интенсивность ее перемещения.

Коэффициент влагопроводности представляет собой величину, учитывающую одновременно передвижение влаги как в виде пара, так и в виде жидкости по двум системам водопроводящих путей в древесине: по системе макрокапилляров, заполненных воздухом (полости клеток, разделенные мембранами пор, межклеточные пространства), и по системе микрокапилляров в клеточных оболочках.

По макрокапиллярам влага перемещается в виде пара под действием градиента его парциального давления. Передвижение влаги по микрокапиллярам в клеточной оболочке носит более сложный характер и происходит как в виде пара, так и в виде жидкости; этот случай передвижения влаги в древесине называется диффузной проницаемостью.

При влажности выше предела гигроскопичности, когда в древесине есть не только связанная, но и свободная влага, градиент влажности не определяет скорости передвижения влаги. Если древесина содержит свободную влагу по всему объему сортимента, в ней возможно лишь передвижение свободной влаги в виде жидкости под действием внешних сил (например, разности гидростатического или избыточного давления). В этом случае передвижение свободной влаги будет определяться водопроводимостью (или капиллярной проницаемостью древесины).

В процессе высыхания влажность у поверхности сортимента довольно быстро снижается за предел гигроскопичности. При этом максимальный радиус заполненных влагой капилляров в оболочке клеток оказывается на поверхности меньше, чем внутри древесины, где вода еще заполняет макрокапилляры (полости клеток). В результате между поверхностным и смежным с ним внутренним слоями древесины возникает разность капиллярных давлений, которая заставляет свободную влагу передвигаться изнутри к поверхности, где она и испаряется. При дальнейшем течении процесса высыхания в древесине по толщине сортимента образуются три зоны: диффузная зона с влажностью ниже Wат; скорость передвижения связанной влаги в этой зоне определяется градиентом влажности; зона испарения свободной влаги; средняя влажность древесины здесь выше Wur и постепенно повышается по направлению к центру сортимента; действительная влажность в различных точках этой зоны может быть как выше, так и ниже предела гигроскопичности; капиллярная зона с примерно одинаковой по всей толщине влажностью выше Wur; перемещение свободной влаги происходит в этой зоне под влиянием разности капиллярных натяжений.

Толщина перечисленных зон может заметно изменяться в процессе высыхания в зависимости от начальной влажности древесины, ее влагопроводности и капиллярной проницаемости, однако механизм передвижения влаги и общий характер кривых 1—6 распределения влажности по зонам одинаковы для древесины всех пород. В любом случае интенсивность высыхания древесины лимитируется скоростью передвижения влаги в диффузной зоне, где это передвижение зависит от влагопроводности.

Основные факторы, определяющие коэффициент влагопроводности древесины, следующие: влажность древесины, температура, положение в стволе (заболонь или ядро и спелая древесина), плотность, направление (вдоль волокон и поперек волокон — радиальное или тангенциальное).

С повышением влажности коэффициент влагопроводности сначала увеличивается, достигает максимума при влажности 22— 24%, затем начинает снижаться. Такая закономерность в изменении коэффициента влагопроводности объясняется разным соотношением эффективности двух систем влагопроводящих путей в древесине при различной ее влажности.

С повышением температуры древесины коэффициент влагопроводности повышается. Это обусловлено тем, что при повышении температуры возрастает интенсивность передвижения как паров воды вследствие увеличения коэффициента диффузии пара, так и влаги вследствие уменьшения ее вязкости.

Зависимость коэффициента влагопроводности от породы определяется разницей плотности древесины разных пород: с повышением плотности коэффициент влагопроводности уменьшается, причем влагопроводность у заболони оказывается выше, чем у ядра и спелой древесины (при одинаковой плотности).

Объяснение этих явлений можно искать в следующем. При малой плотности основную роль в передвижении влаги по древесине, вероятно, играет система макрокапилляров, поэтому уменьшение плотности и соответствующее относительное увеличение объема полостей клеток, естественно, вызывают повышение коэффициента влагопроводности. В ядровой и спелой древесине проницаемость пор в оболочках клеток значительно меньше, чем в заболони (водопроводящие элементы в ядре и спелой древесине выключаются из действия); этим и определяется меньшая влагопроводность древесины. Таким образом, по характеру зависимости влагопроводности от плотности следует различать: а) древесину ядра и спелую древесину; б) древесину заболони и древесину заболонных пород.Влагопроводность в радиальном направлении несколько больше, чем в тангенциальном; это объясняется влиянием сердцевинных лучей. У пород с широкими лучами это различие больше. Так, отношение коэффициентов влагопроводности в радиальном и тангенциальном направлениях у сосны равно 1,15, у дуба 1,5 и у бука 1,7. Коэффициент влагопроводности древесины вдоль волокон в 12—18 раз больше, чем поперек волокон в тангенциальном направлении; это объясняется тем, что вдоль волокон влага передвигается по тем же водопроводящим путям, по которым происходит передвижение ее в растущем дереве. Коэффициенты влагопроводности используются для расчетов продолжительности процессов высыхания при промышленных способах сушки: атмосферной, камерной и др.

При атмосферной сушке пиломатериалов в штабелях на открытом воздухе продолжительность сушки сравнительно велика. Время, необходимое для того, чтобы свежевыпиленные сосновые доски толщиной 35—50 мм в климатических условиях северной зоны достигли транспортной влажности следующее: при укладке досок для сушки в апреле—мае 43—51 суток, июне — июле 22—43 суток, августе—сентябре 43—51 суток. Тем не менее этот способ сушки широко используется, так как себестоимость его меньше, чем себестоимость камерной сушки.

При камерной сушке пиломатериалов в закрытых сушильных установках, оборудованных нагревательными устройствами, интенсивность процесса удаления влаги выше. В камерах пиломатериалы можно высушить до более низкой влажности значительно быстрее. Нормативная продолжительность сушки досок толщиной 50 мм от влажности 60% до 12% составляет 5 суток.

При атмосферной и камерной сушке, а также просто при выдержке древесины в комнатных или иных условиях удаление влаги из древесины прекращается только после того, когда влага равномерно распределится в древесине, а влажность древесины будет соответствовать температуре и относительной влажности окружающего воздуха; это состояние древесины называется равновесным, а влажность древесины — равновесной, или устойчивой. Древесина достигает равновесной влажности, когда упругость паров окружающего воздуха сравняется с упругостью паров воды у поверхности древесины.

Каждому сочетанию температуры t и относительной упругости пара в воздухе (относительной влажности воздуха) Ψ соответствует определенная влажность древесины Wp, которая практически не зависит от породы. Значения равновесной влажности размельченной древесины можно определить по диаграмме на рис. 35. При данной температуре и относительной упругости пара в воздухе равновесную влажность древесины можно найти следующим образом. Допустим, например, что t = 20°, а Ψ = 0,6; на пересечении двух соответствующих прямых находим точку, которая оказывается расположенной между двумя наклонными кривыми Wр=11% и Wp=l2%. Интерполируя, находим, что искомая равновесная влажность древесины составляет 11,2%.

усушка древесины

При высыхании древесины удаление связанной влаги приводит к уменьшению линейных размеров и объема. Это явление называется усушкой древесины. Уменьшение содержания свободной влаги, т. е. снижение влажности от свежесрубленного или мокрого состояния до предела гигроскопичности не вызывает усушки.

Связанная влага, как отмечалось, находится в клеточных оболочках, преимущественно в промежутках между микрофибриллами и частично внутри самих микрофибрилл. Поскольку микрофибриллы в основном ориентированы по направлению продольной оси клетки, удаление связанной влаги приведет к уменьшению толщины клеточных оболочек и уменьшению поперечных размеров клетки. Отсюда ясно, что наибольшая усушка древесины должна быть в поперечных направлениях. Продольная усушка, которая обусловлена некоторым наклоном микрофибрилл, значительно меньше, так как составляет лишь долю от основной поперечной деформации. Поперек волокон также наблюдается анизотропия усушки. Давно установлено, что тангенциальная усушка в 1,5—2 раза больше радиальной; причины этого различия еще недостаточно выяснены.

Отдельные элементы древесины при высыхании ведут себя по- разному. Размеры сосудов и паренхимных клеток обычно уменьшаются в тангенциальном направлении и несколько увеличиваются в радиальном; древесные же волокна усыхают примерно одинаково в обоих направлениях. Сердцевинные лучи сильнее усыхают по ширине, чем по длине. Установлено, что у хвойных пород между радиальной и тангенциальной усушкой древесины поздней зоны годичных слоев существует небольшое различие, а тангенциальная усушка древесины ранней зоны годичных слоев в 2—3 раза превосходит радиальную. При этом поздняя древесина поперек волокон усыхает значительно больше, чем ранняя, а вдоль волокон, наоборот, поздняя древесина усыхает меньше, чем ранняя.

усушка поздней и ранней древесины

Порода Зона годичного слоя Усушка, %
радиальная тангенциальная вдоль волокон объемная
Лиственница Ранняя 3,23 7,11 0,27 10,34
Поздняя 10,19 12,25 0,13 20,96
Сосна Ранняя 2,91 8,05 0,19 10,86
Поздняя 8,22 11,26 0,10 18,97
Ель Ранняя 2,41 5,84 0,19 8,38
Поздняя 6,25 8,81 0,14 14,63

Аналогичные данные получены для тангенциальной усушки отдельных зон годичного слоя в древесине хвойных и лиственных пород.

тангенциальная усушка ранней и поздней зон годичного слоя хвойных и лиственных пород

Порода Усушка, % Порода Усушка, %
ранней зоны поздней зоны ранней зоны поздней зоны
Лиственница 8,5 10,4 Бук 12.9 13,4
Сосна 7,2 8,1 Береза 9,4 10,2
Ель 6,5 8,0 Тополь 10,4 11,9
Дуб 0,2 10,9 Ива 6,9 7,4

Примечание. Для рассеяннососудистых пород под ранней зоной годичного слоя подразумевается первая половина, обращенная к сердцевине, а под поздней— вторая половина, обращенная к коре.

Усушка древесины в целом занимает среднее положение между усушкой ранней и поздней древесины, но выше средней арифметической; из этого следует, что усушка поздней зоны для тангенциального направления имеет особо важное значение. Если учесть, что сердцевинные лучи по ширине усыхают больше, чем по длине, этими двумя причинами уже можно удовлетворительно объяснить различие между радиальной и тангенциальной усушкой древесины. При этом для древесины хвойных пород главное значение имеет повышенная тангенциальная усушка поздней зоны годичных слоев, а для древесины лиственных пород — усушка сердцевинных лучей по ширине.

Усушку древесины следует также рассматривать как результат деформирования некоторой ячеистой конструкции. При этом большое значение приобретает упругая анизотропия такой системы, обусловленная главным образом особенностями расположения ячеек — полостей клеток. Большая усушка должна быть в направлении меньшей жесткости системы и наоборот. Как будет показано далее, в радиальном направлении жесткость (модуль упругости) выше, чем в тангенциальном направлении. Это также должно служить объяснением большей усушки в тангенциальном направлении. Мерой усушки является относительная несиловая влажностная деформация. Для исчисления усушки уменьшение размеров (объема) образца, т. е. его влажностная деформация, должна быть отнесена к размеру (объему) образца при пределе гигроскопичности.

Под полной усушкой У понимают уменьшение линейных размеров или объема древесины при удалении всего количества связанной влаги. Следовательно, для установления полной усушки влажность должна быть снижена от предела гигроскопичности до нуля. Наибольшая полная линейная усушка, равная 6—10%, наблюдается в тангенциальном направлении; в радиальном направлении полная усушка составляет 3—5%, а вдоль волокон величина усушки в десятки раз меньше и равна 0,1—0,3%. Полная объемная усушка в среднем составляет 12—15%. Для расчетов влажностных деформаций древесины удобен коэффициент усушки, определяющий величину усушки при снижении содержания связанной влаги в древесине на 1%. С достаточной степенью приближения можно полагать, что между усушкой и убылью связанной влаги имеется линейная зависимость. Зная частичную Уw или полную усушку У, коэффициент усушки Кy.

С увеличением плотности древесины величина усушки, как правило, увеличивается. Средняя величина усушки поперек волокон (радиальной и тангенциальной) хвойных пород меньше, чем лиственных, однако неравномерность усушки, т. е. отношение тангенциальной усушки к радиальной, наоборот, у хвойных пород больше, чем у лиственных. Об усушке наиболее распространенных пород можно судить по данным, приведенным в табл. 16. Приводимые в справочной литературе коэффициенты определены по усушке, величина которой исчислялась как отношение уменьшения размеров (объема) образца к его размеру (объему) в абсолютно сухом состоянии. Таким образом, в справочниках даются не коэффициенты усушки, а коэффициенты разбухания (см. ниже).

коэффициенты усушки Ку и разбухания Kр.

Порода Коэффициент усушки и разбухания, %
объемный радиальный тангенциальный
Ку Кр Ку Кр Ку Кр
Лиственница 0,52 0,61 0,19 0,20 0,35 0,39
Сосна 0,44 0,51 0,17 0,18 0,28 0,31
Ель 0,43 0,50 0,16 0,17 0,28 0,31
Пихта сибирская 0,39 0,44 0,11 0,11 0,28 0,31
Кедр 0,37 0,42 0,12 0,12 0,26 0,28
Береза 0,54 0,64 0,26 0,28 0,31 0,34
Бук 0,47 0,55 0,17 0,18 0,32 0,35
Ясень 0,45 0,52 0,18 0,19 0,28 0,31
Дуб 0,43 0,50 0,18 0,19 0,27 0,29
Осина 0,41 0,47 0,14 0,15 0,28 0,30

Коэффициент усушки Ку можно вычислить по коэффициенту разбухания Кр (принимая Wm =30%)

В табл. 16 наряду с известными значениями коэффициентов разбухания Кр даны значения коэффициентов усушки Ку. Определяется усушка следующим образом. Образец имеет вид призмы с основанием 20×20 мм и высотой 30 мм, измеряемой вдоль волокон. Все поверхности образца гладко острагивают. На торцовой поверхности годичные слои должны быть строго параллельны одной паре противоположных граней и перпендикулярны другой. Все грани образца должны быть под прямым углом друг к другу. На продольных плоскостях на уровне половины высоты проводят карандашные риски, которыми отмечают места последующих измерений для определения радиальной и тангенциальной линейной усушки. Образцы погружают в сосуд с дистиллированной водой и выдерживают до достижения постоянных размеров по радиальному и тангенциальному направлениям. Измеряют образцы через каждые 3 суток. Перед каждым измерением поверхности образцов осушают фильтровальной бумагой.

После окончания выдержки образцы практически находятся в состоянии, соответствующем пределу гигроскопичности. В таком состоянии по рискам измеряют радиальный и тангенциальный размеры, а также высоту образца — по расстоянию между двумя центральными рисками на торцовых поверхностях с точностью до 0,01 мм. Для измерения используют микрометры, штангенциркули или индикаторные скобы. Во избежание трещин образцы медленно подсушивают при температуре 30°, а затем в сушильном шкафу температуру повышают до 103+ 2° С и доводят образцы до абсолютно сухого состояния. Вслед за этим образцы вынимают из сушильного шкафа и без промедления (чтобы по возможности исключить влагопоглощение) измеряют вновь по тем же рискам радиальный, тангенциальный и продольный размеры образца с той же точностью. На основании результатов измерения образца при пределе гигроскопичности и в абсолютно сухом состоянии определяют полную радиальную, тангенциальную или объемную.

Затем вычисляют коэффициент усушки. Усушка вдоль волокон ввиду малой величины обычно во внимание не принимается. Практическое значение усушки поперек волокон очень велико и ее приходится учитывать, предусматривая, например, припуски на усушку при распиловке бревен на доски; бревна распиливают обычно во влажном состоянии и, если не дать припуска на усушку, полученные пиломатериалы после высыхания не будут иметь требуемых размеров поперечного сечения.

внутренние напряжения, растрескивание и коробление древесины

Высыхание древесины происходит таким образом, что в прилегающих к поверхностям сортимента зонах влажность значительно меньше, чем во внутренних зонах. В этом основная причина возникновения внутренних напряжений. Внутренние напряжения образуются без участия внешних нагрузок в результате лишь неоднородных изменений объема и уравновешены в пределах данного тела. Полные внутренние напряжения в древесине удобно рассматривать как совокупность двух составляющих — влажностных и остаточных напряжений. Влажностные напряжения вызваны неоднородной усушкой материала, обусловленной в свою очередь неравномерным распределением в нем гигроскопической влаги. Эта составляющая полных напряжений возникает из-за стеснения свободной усушки и исчезает при выравнивании влажности, когда каждый участок сортимента имеет возможность принять объем, соответствующий его влажности.

Остаточные напряжения обусловлены появлением в древесине неоднородных остаточных деформаций. В отличие от влажностных они не исчезают при выравнивании влажности в доске и наблюдаются как во время сушки, так и после ее полного завершения. Знаки влажностных и остаточных напряжений противоположны и результирующие полные напряжения представляют собой алгебраическую сумму. В первом периоде сушки влажностные напряжения больше остаточных, и полные напряжения, имея знак большей составляющей, проявляются как растягивающие у поверхности сортимента и как сжимающие — внутри. Во втором периоде остаточные напряжения превышают влажностные и результирующие напряжения меняют знак.

Если растягивающие напряжения достигнут предела прочности древесины на растяжение поперек волокон, появляются трешины. Так образуются поверхностные трещины в начале сушки и внутренние трещины (свищи) в конце сушки. Эти трещины (наружные и внутренние) обычно имеют радиальное направление, так как разрыв тканей происходит вдоль сердцевинных лучей вследствие сравнительно слабой связи между древесными волокнами и сердцевинными лучами.

Внутренние напряжения, сохраняющиеся в высушенном материале (остаточные напряжения), могут быть причиной изменения заданной формы деталей при механической обработке древесины. Количественная характеристика внутренних напряжений может быть найдена при помощи метода для измерения остаточных напряжений в древесине с выравненной влажностью. Поэтому методу из доски на расстоянии 0,3 м от торца выпиливают рядом две секции, толщиной (по волокну) 15 мм, захватывая все сечение. После выдержки в течение 1—2 суток для выравнивания влажности одну из секций раскалывают параллельно длине на слои толщиной 4 мм. Путем измерения длины этих слоев до и после раскроя определяют изменение их размеров и находят величину относительной деформации каждого слоя. Вторую секцию распиливают на слои толщиной 8—10 мм; полученные брусочки с направлением волокон, перпендикулярным их длине, используют для определения модуля упругости (при статическом изгибе с нагружением в двух точках). На основании полученных величин относительной деформации ε и модуля упругости Е вычисляют для каждого слоя напряжения.

По полученным данным строится кривая распределения (эпюра) напряжений по толщине доски. Величина остаточных напряжений после камерной сушки значительно выше, чем после атмосферной. В пиломатериалах из древесины лиственных пород остаточные напряжения больше, чем из древесины хвойных пиломатериалов. Так, в поверхностном слое буковых досок сжимающие остаточные напряжения достигали 45 кГ/см2, а растягивающие во внутренней зоне 22 кГ/см2, в то время как у сосновых досок напряжения равнялись соответственно 16 и 8 кГ/см2.

С некоторыми усложнениями (учет усушки и внесение соответствующих поправок при определении относительной деформации, предохранение от высыхания брусочков для определения модуля упругости) описанный метод может быть применен и для измерения внутренних напряжений в древесине в процессе атмосферной сушки и в момент окончания камерной сушки (при невыравненной влажности по сечению сортимента). Короблением древесины называется изменение формы сортимента при высыхании или увлажнении. Различают поперечное и продольное коробление.

Поперечное коробление выражается в изменении формы сечения сортимента. Например, квадратная форма сечения бруска после высыхания становится прямоугольной и даже ромбической, плоская доска приобретает желобчатую форму и т. д. Поперечное коробление вызывается различием между радиальной и тангенциальной усушкой: внутренняя (обращенная к сердцевине) пласть доски ближе к чисто радиальному направлению, а внешняя — к тангенциальному, поэтому размеры разных частей досок изменяются неодинаково. Поперечное коробление досок из данного бревна тем больше, чем ближе к сердцевине расположена доска.

Продольное коробление наблюдается двух видов: в форме выгибания (по длине), когда прямая доска после высыхания становится дугообразной, и в форме перекручивания, когда плоская доска принимает форму винтовой поверхности. Первый вид коробления вызывается разницей усушки вдоль волокон между двумя зонами древесины (например, если в бруске одновременно имеется заболонь и ядро или нормальная и креневая древесина), второй является следствием наклона волокон.

влагопоглощение

Способность древесины поглощать влагу из окружающего воздуха называется влагопоглощением. В первой стадии поглощения молекулы водяного пара из воздуха адсорбируются активной поверхностью микрофибрилл, находящихся в клеточной оболочке. Адсорбционная влага удерживается молекулярным силовым полем и прочно связана с древесиной, причем наиболее прочно связан слой влаги толщиной, равной размеру ее молекулы (мономолекулярный слой). Адсорбция влаги сопровождается выделением тепла (тепло набухания). Так, найдено, что 1 кг древесины ели при поглощении влаги от абсолютно сухого состояния до предела гигроскопичности выделяет 17 ккал тепла. По другим данным, количество выделенного тепла древесиной разных пород колеблется от 14,6 до 19,6 ккал.

По мере поглощения влаги полимолекулярный слой влаги утолщается. Поглощение влаги происходит постепенно замедляясь до предела гигроскопичности. Замедление процесса поглощения влаги и выделение тепла указывают на то, что наряду с адсорбцией происходит и конденсация влаги в микрокапиллярах клеточной оболочки, которая начинается при относительной упругости пара в воздухе 0,45, чему при комнатной температуре соответствует влажность древесины около 8,5%. Адсорбционная влага и влага микрокапиллярная находится в оболочках клеток и своей совокупностью образует связанную влагу. Свободной влаги, заполняющей полости клеток, при влагопоглощении не образуется. Количество поглощаемой влаги зависит от температуры и относительной упругости пара в воздухе и может быть определено по диаграмме t — Ψ — Wp, приведенной на рис. 35.

Равновесная влажность древесины при высыхании и увлажнении не вполне совпадает. Разница между равновесной влажностью при высыхании и поглощении влаги характеризует величину гистерезиса равновесной влажности, который зависит от размеров сортимента. Для измельченной древесины (древесной стружки) гистерезис составляет около 0,2% влажности; при увеличении размеров сортимента до определенных пределов гистерезис возрастает, а затем остается постоянным, для сортиментов обычных размеров равным 2—3% влажности. Явление гистерезиса объясняется тем, что при увлажнении (поглощении влаги из воздуха) стенки капилляров между микрофибриллами смачиваются влагой хуже, чем при высыхании, из-за частичного поглощения поверхностью фибрилл молекул газов наравне с молекулами воды.

При одинаковых условиях влагопоглощение древесины практически не зависит от породы; в большинстве случаев разницы во влагопоглощении древесины ядра и заболони не наблюдается. Изделия из древесины в помещениях, где температура и влажность воздуха меняются, соответственно изменяют свою влажность. Так, в жилых помещениях Ленинграда наибольшая влажность мебели (11,6%) наблюдается осенью (август—октябрь), наименьшая — в марте. Влажность древесины мебели в помещениях с печным отоплением в среднем на 2—3% больше, чем в помещениях с центральным отоплением. Влажность древесины полов и внутренних дверей практически не отличается от влажности древесины мебели.

Определяют влагопоглощение на образцах в форме торцовых плиток размерами 30X30X10 мм (последний размер по длине волокон). Образцы высушивают до абсолютно сухого состояния при t= 103 ±2° С, после чего одной из боковых поверхностей располагают на решетке эксикатора так, чтобы они не касались один другого. На дно эксикатора наливают насыщенный раствор соды Na2C03 х 10 Н2О. Применение раствора соды вместо чистой воды объясняется тем, что над поверхностью такого раствора относительная упругость пара в воздухе будет 0,92%; это уменьшает возможность конденсации паров воды при колебаниях температуры во время опыта. Образцы периодически взвешивают с точностью 0,001 г; первое взвешивание делают через сутки, считая с момента помещения образцов в эксикатор, затем через 2, 3, 5, 8, 13, 20 суток и далее через каждые 10 суток. Минимальная продолжительность наблюдений 30 суток. Для каждого взвешивания вычисляют влажность образца с точностью 0,1%; на основании полученных данных строят диаграмму влагопоглощения, для чего на оси абсцисс откладывают время, а на оси ординат — влажность в процентах.

Способность древесины поглощать влагу из воздуха относится к ее отрицательным свойствам, поэтому для уменьшения влагопоглощения принимаются различные меры. Так, древесину покрывают красками и лаками, однако это не всегда эффективно; лучшие результаты дают лаки на основе искусственных смол. Некоторое снижение влагопоглощения может быть достигнуто также путем термообработки древесины. Однако в этом случае могут ухудшаться механические свойства, особенно сопротивление ударному изгибу. Более существенное снижение гигроскопичности достигается пропиткой древесины искусственными смолами. Модификация древесины березы путем пропитки 25%-ным водным раствором фенолоспиртов приводит к тому, что амплитуда колебаний влажности древесины при выдержке в атмосферных условиях снижается примерно в 4 раза. У модифицированной древесины резко повышается грибостойкость.

разбухание древесины

При увлажнении древесины в результате увеличения содержания связанной влаги микрофибриллы в клеточных оболочках раздвигаются. Это вызывает увеличение размеров (объема) анатомических элементов и древесины в целом — разбухание. Мерой разбухания является влажностная деформация, отнесенная к размеру (объему) образца в абсолютно сухом состоянии:

где Pw — разбухание образца при достижении данной влажности W, %; aw— размер (объем) образца при данной влажности W, мм (мм3); ао — размер (объем) образца в абсолютно сухом состоянии (W=0%), мм (мм3);

Разбухание представляет собой явление, обратное усушке, и практически подчиняется одним и тем же количественным закономерностям. Полное разбухание Р наступает при увлажнении древесины от абсолютно сухого состояния до предела гигроскопичности. Дальнейшее увеличение влажности древесины вследствие повышения содержания свободной влаги разбуханием не сопровождается. Объем разбухшей древесины получается несколько меньше суммы объемов древесины до разбухания и поглощаемой ею воды. Это уменьшение объема системы (древесина — вода) называется контракцией и объясняется сжатием (уплотнением) воды, происходящим под большим давлением. Вода в оболочке клеток находится под давлением 3000—4000 ат и имеет поэтому повышенную плотность. Полученные данные указывают на то, что контракция происходит при увеличении влажности от 0 до примерно 6%; последующие количества поглощаемой воды не претерпевают сжатия. Коэффициент разбухания Кр, если известно частичное Pw или полное Р разбухание.

Для характеристики явления разбухания ограничиваются непосредственным экспериментальным определением полного линейного радиального и тангенциального разбухания Р. Часто совмещают определение разбухания и водопоглощения (см. ниже). Соблюдая ранее отмеченные требования к расположению годичных слоев, изготовляют образец в виде прямоугольной плитки размером 30X30X10 мм (наименьший размер вдоль волокон). Образцы высушивают в сушильном шкафу при температуре, постепенно (во избежание растрескивания) поднимающейся к 103±2°С, до абсолютно сухого состояния. При высушивании и взвешивании образцы находятся в бюксах. На торцовой поверхности высушенных и охлажденных в эксикаторе с безводным хлористым кальцием образцах наносят карандашные риски по двум взаимно перпендикулярным (радиальному и тангенциальному) направлениям. Измеряя расстояние между продольными плоскостями образца в местах, отмеченных рисками, определяют радиальный и тангенциальный размеры образца до с точностью до 0,01 мм. Затем образцы помещают в закрываемый крышкой сосуд с дистиллированной водой, имеющей температуру 20±2° С. Образцы выдерживают в сосуде до тех пор, пока два контрольных измерения тангенциального размера не покажут повторения результатов. После окончания выдерживания вновь в тех же местах определяют радиальный и тангенциальный размеры образца апг. Полное разбухание в радиальном и тангенциальном направлениях.

Величину частичного разбухания Pw (линейного и объемного) обычно определяют путем высушивания образцов 20X20X30 мм с начальной влажностью 12—15% до абсолютно сухого состояния и проведения соответствующих измерений до и после сушки. Значения коэффициентов разбухания для наиболее распространенных пород приведены в табл. 16. Кинетику радиального и тангенциального разбухания можно установить путем измерения индикатором часового типа деформаций образцов, погруженных в воду. По результатам наблюдений строят диаграммы изменения деформации разбухания во времени. Если воспрепятствовать свободному увеличению размеров и объема древесины при влагопоглощении, вследствие стеснения влажностных деформаций возникнут усилия — давление набухания. Для березы в радиальном направлении давление набухания составило 10 кГ/см2. Давления набухания древесины некоторых пород при температуре 20° приведены в табл.

величина давления при набухании древесины различных пород

Порода Давление набухания, кГ/см2 Порода Давление набухания, кГ/см2
радиальное тангенциальное радиальное тангенциальное
Сосна 8,2 14,4 Ясень 15,7 21,0
11,0 21,4 27,2 31,8
Лиственница 7,4 16,9 Береза 10,4 8,6
9,1 17,1
Дуб 10,5 19,2 Осина 8,9 10,4
15,4 31,0
Бук 12,2 13,7 Ольха 10,2 8,9

Примечание. В числителе — данные для заболони, в знаменателе — для ядра.

С увеличением температуры давление набухания существенно снижается. Для сосны повышение температуры от 20 до 80° приводит к уменьшению давления набухания более чем в 2 раза. Разбухание древесины происходит и при поглощении других жидкостей, но в меньшей степени, чем воды.

разбухание древесины при поглощении различных жидкостей

Жидкости Диэлектрическая постоянная Разбухание, %
сосна дуб (ядро) бук
заболонь ядро
Вода 80,1 4,2—10,2 4,1—9,8 5,0-10,1 6,1—14,8
Метиловый спирт 33,5 3,6-9,2 3,6-8,8 4,7—9,8 5,7—13,6
Этиловый спирт 25,7 3,4—8,4 4,6—6,7 4,4—8,7 5,4—11,5
Ацетон 21,3 2,8—6,6 2,7-6,2 3,8-7,7 4,3—11,0
Хлороформ 5,0 0,9—1,7 0,9-1,4 2,0-3,2 4,8—7,9
Скипидар 2,3 0,2—0,4 0,1—0,3 0,3—0,6 0,2—0,3
Керосин 2,1 0,1-0,4 0,0—0,1 0,1—0,1 0,1-0,2

Примечание. Меньшие цифры (слева) характеризуют радиальное, а большие (через тире справа) — тангенциальное разбухание.

Данные этой таблицы показывают, что разбухание тем больше, чем выше диэлектрическая постоянная поглощенной жидкости. Из веществ, составляющих клеточную оболочку, сильнее всего разбухают пентозаны; при пропаривании древесины количество пентозанов уменьшается, вследствие чего несколько снижается разбухание пропаренной древесины. Пропитка древесины веществами, уменьшающими ее влагопоглощение, вызывает также снижение разбухания. Пропитка древесины березы хлористым алюминием снижает влагопоглощение и разбухание вдвое, пропитка же искусственной смолой снижает влагопоглощение в 3 раза, а тангенциальное разбухание — в 5 раз. Кривые усушки и разбухания для данной древесины не совпадают, т. е. имеет место гистерезис разбухания, аналогично гистерезису равновесной влажности. Разбухание — отрицательное свойство древесины, но в некоторых случаях оно играет положительную роль, обеспечивая плотность соединений в бочарной таре под жидкие товары, деревянных трубах, судах и т. д.

водопоглощение

Вследствие пористого строения при непосредственном контакте с капельножидкой влагой древесина способна увеличивать свою влажность. Это свойство древесины называется водопоглощением. Максимальная влажность, которой достигает погруженная в воду древесина, складывается из предельного количества связанной влаги (предел гигроскопичности) и наибольшего количества свободной влаги. Вполне очевидно, что это количество свободной влаги зависит от объема полостей в древесине поэтому чем больше плотность древесины, тем меньше ее влажность, характеризующая максимальное водопоглощение.

Результаты вычислений по этой формуле не вполне совпадают с опытными данными еще вследствие того, что практически не все пустоты внутри древесины могут быть заполнены водой из-за наличия в полостях смолы, закупорки сосудов тиллами и т. д.

После пребывания в воде в течение года древесина заболони поглотила 202%, а древесина ядра —126% влаги; вычисление по приведенной выше формуле дало соответственно 206 и 180%. Находясь в воде, древесина достигает состояния насыщения через довольно большой промежуток времени; распределение влаги при этом вначале резко неравномерно, и выравнивание влажности также занимает продолжительное время.

Водопоглощение зависит от породы, начальной влажности, температуры, а также от формы и размеров образца. Так, водопоглощение ядровой древесины меньше, чем заболонной; с увеличением плотности водопоглощение уменьшается. Форма образца имеет существенное значение для скорости поглощения: поглощение воды происходит главным образом через торцовые поверхности, поэтому образцы с большой торцовой поверхностью поглощают воду значительно быстрее. Для определения водопоглощения используются такие же образцы, как и для определения влагопоглощения (размером 30X30X10 мм). Определение водопоглощения можно совместить с нахождением показателей разбухания, так как процедура эксперимента в основном одна и та же.

Высушенные до абсолютно сухого состояния образцы погружают в сосуд с водой и во время выдерживания периодически взвешивают через все возрастающие промежутки времени (2 ч — 1, 2, 4, 7, 12, 20 суток и далее через каждые 10 суток). По результатам периодических взвешиваний и известной массе образцов в абсолютно сухом состоянии определяют текущую влажность в процессе водопоглощения. Обычно эксперимент заканчивают после 30 суток выдерживания. Однако в некоторых случаях выдерживание продолжают дальше, проводя взвешивание через каждые 10 суток до тех пор, пока приращение влажности за указанное время окажется менее 5 %.

По результатам определения текущей влажности строят диаграмму водопоглощения древесины в координатах «влажность древесины — продолжительность выдерживания». За основной показатель водопоглощения принимают влажность, достигнутую древесиной при выдерживании в воде в течение 30 суток; поэтому, если нет необходимости в построении кривой водопоглощения, ограничиваются однократным взвешиванием после 30 суток выдерживания. Водопоглощение древесины имеет существенное значение при сплаве, при пропитке антисептиками и антипиренами, при варке древесины для получения целлюлозы и т. д.

Механические свойства древесины.

общие сведения о механических свойствах древесины При использовании древесины в качестве конструкционного и поделочного материала, а также в технологических процессах обработки проявляются ее механические свойства, характеризующие способность древесины сопротивляться механическим усилиям. Показатели этих свойств древесины определяют путем специальных экспериментов — механических испытаний, при которых создают различные напряженные и деформированные состояния образцов древесины. Задачи механических испытаний […]

нет комментариев

Электромагнитные свойства древесины.

Свойства древесины, проявляющиеся при воздействии электромагнитных излучений. Различные виды излучений, представляющих собой электромагнитные колебания, образуют спектр, охватывающий огромный диапазон длин волн. Наибольшую длину имеют радиоволны (от десятков километров до миллиметров). Действие на древесину этих видов излучений частично изложено при рассмотрении электрических свойств древесины. Ниже будут рассмотрены свойства древесины, проявляющиеся при действии излучений, занимающих остальную часть […]

нет комментариев

Звуковые свойства древесины

показатели, характеризующие распространение звука в древесине Как известно, звук представляет собой колебания, волнообразно распространяющиеся в упругих средах. Особенности распространения звуковых колебаний зависят от физических свойств среды и характеризуются рядом показателей. Скорость распространения звука тем больше, чем меньше плотность среды р и выше ее жесткость (модуль упругости Е). При распространении волны в направлении колебательного движения частиц […]

нет комментариев

Электрические свойства древесины.

электропроводность древесины Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное […]

нет комментариев

Тепловые свойства древесины

теплоемкость древесины Способность древесины поглощать тепло характеризуется теплоемкостью. В качестве меры используется удельная теплоемкость с, которая представляет собой количество тепла, необходимое для того, чтобы нагреть древесину массой 1 кг на 1о С. Размерность удельной теплоемкости — ккал/кг х град или в международной системе единиц СИ-дж/кг х град. В пределах изменения температуры от 0 до 100° […]

нет комментариев

Влажность древесины

влага в древесине Наличие влаги в древесине обусловлено нормальной жизнедеятельностью живого растущего организма. В древесине срубленного дерева содержание влаги (в зависимости от условий хранения, и эксплуатации изделий) может увеличиваться или уменьшаться. В большинстве случаев практики влагу из древесины удаляют, чтобы избежать ряда отрицательных явлений. Для количественной характеристики содержания влаги в древесине используют показатель влажности древесины. […]

нет комментариев

Физические свойства древесины

Свойства древесины, проявляющиеся при взаимодействии ее с внешней средой, но не связанные с изменением химического состава древесинного вещества, принято называть физическим. Из этого обширного ряда свойств несколько условно выделяются свойства древесины, обнаруживающиеся под действием механических усилий. Ниже рассматриваются физические свойства, показатели которых определяются методами, регламентированными действующими стандартами. Кроме того, освещается ряд пока мало распространенных, но […]

нет комментариев

Химические свойства древесины

химический состав древесины Древесина состоит из органических веществ, в состав которых входят углерод С, водород Н, кислород О и немного азота. Элементарный химический состав древесины разных пород практически одинаков. В среднем абсолютно сухая древесина независимо от породы содержит 49,5% углерода, 44,2% кислорода (с азотом) и 6,3% водорода. Азота в древесине содержится около 0,12%. Элементарный химический […]

нет комментариев

Макроскопическое строение древесины

макроскопическое строение древесины – заболонь, ядро, спелая древесина У большинства наших лесных пород древесина окрашена в светлые цвета, причем у одних пород нет разницы в окраске всей массы древесины, а у других — периферическая, прилегающая к коре часть древесины окрашена светлее. Эта более светлая часть ствола называется заболонью. Центральная темноокрашенная часть ствола называется ядром (см. […]

нет комментариев

Строение древесины

строение древесины – части растущего дерева Растения делятся на низшие и высшие. К низшим относятся бесстебельные растения: бактерии, водоросли, грибы, лишайники. К высшим растениям принадлежат мхи, папоротники, голосемянные и покрытосемянные. Древесные растения, которые дают древесину как материал для разнообразного применения, входят в состав двух последних групп. Широко распространенные на территории России хвойные породы относятся к […]

нет комментариев

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Физические свойства древесины

изделия из массива на заказ

Свойства древесины, проявляющиеся при взаимодействии ее с внешней средой, но не связанные с изменением химического состава древесинного вещества, принято называть физическим. Из этого обширного ряда свойств несколько условно выделяются свойства древесины, обнаруживающиеся под действием механических усилий. Ниже рассматриваются физические свойства, показатели которых определяются методами, регламентированными действующими стандартами. Кроме того, освещается ряд пока мало распространенных, но перспективных методов физических исследований древесины. Физические свойства древесины объединены в восемь следующих групп: свойства, характеризующие внешний вид и макроструктуру древесины; влажность и свойства, связанные с ее изменением; плотность; проницаемость древесины жидкостями и газами; тепловые свойства; электрические свойства; действие излучений на древесину; звуковые свойства древесины.

цвет древесины

Под цветом древесины следует понимать определенное зрительное ощущение, зависящее от спектрального состава отраженного ею светового потока. Древесина обладает избирательной способностью, поглощать световые излучения, и отраженный от нее световой поток имеет иной спектральный состав, чем падающий. В древеспноведческой литературе, так жe как и в быту, для характеристики цвета древесины обычно используются понятия, в основе которых лежат определенные зрительные образы. Между тем любой цветовой оттенок из того многообразия зрительных ощущений, которое доставляет внешний вид древесины различных пород, может быть точно охарактеризован при помощи методов, которыми располагает колориметрия — наука о цветовых измерениях.

Для характеристики цвета необходимо установить численные значения трех показателей: цветового тона λ, чистоты Р и свет лоты p. Цветовой тон определяется длиной волны λ чистого спектрального цвета. Если спектральный цвет смешивается с белым цветом, степень чистоты или насыщенность его уменьшается. Таким образом показатель Р, изменяющийся от 100% до 0, характеризует степень разбавления спектрального цвета белым. Обычно цвета окружающих нас предметов не имеют максимальной насыщенности, т. е. отличаются от чистых спектральных. Кроме этих двух показателей, характеризующих цветность, для полной оценки освещенного извне объекта необходимо знать светлоту цвета. Светлота определяется коэффициентом отражения р. Для белых поверхностей, отражающих максимальное количество световой энергии, коэффициент отражения близок к единице, для черных — приближается к нулю. Характеристики цвета древесины можно установить при помощи атласа цветов, представляющего собой альбом с большим количеством накрасок. На отдельных страницах альбома размещены накраски одного цветового тона, но разной чистоты и светлоты. К исследуемой поверхности подбирают наиболее близкую по цвету накраску атласа. Каждой накраске соответствует определенный номер, по которому в таблице справочника, приложенного к атласу, находят значения λ, Р и р.

Выдержанная в течение 5—20 лет древесина большинства отечественных пород очень мало отличается по цветовому тону. Длина волны λ колеблется в пределе 578— 585 нм, что соответствует желтому участку спектра. Вместе с тем наблюдается большое разнообразие значений чистоты цвета, которые изменяются от 30 до 60%. Светлота р изменяется в еще больших пределах (20—70%). Данные, характеризующие цвет некоторых из исследованных пород, приведены в табл. 12. Кроме атласа цветов, для количественных измерений можно использовать визуальные и фотоэлектрические колориметры. Цвет древесины зависит от климатических условий. Обычно породы умеренного пояса окрашены бледно, породы тропического пояса имеют очень яркую окраску. Влияние климатических факторов сказывается также в пределах одного климатического пояса (умеренного); так, наиболее интенсивно окрашены породы, произрастающие в более теплых зонах нашей страны — дуб, орех, тисс, фисташка, шелковица, белая акация; наиболее распространенные породы — (сосна, ель, осина, береза) окрашены бледно.

цветовые характеристики древесины некоторых пород

Порода Цветовой тон, нм λ Чистота, % Р Светлота, % р
Лиственница — ядро 583,5 54,0 32,5
Тисс:
ядро 585,5 55,8 25,1
заболонь 579,2 45,6 53.5
Сосна:
ядро 581,1 51,6 49,0
заболонь 579,0 47,0 58,6
580,0 44,0 54,4
Кедр —ядро 583,0 46,5 39,5
Пихта 579,6 40,1 57,3
Дуб —ядро 581,5 53,1 29,9
Ильм — ядро 582,0 44,3 34,7
Клен 582,9 41,7 41,7
Береза 582,9 42,2 41,6
Бук 582,7 41,6 35,0
Осина 578,2 38,6 68,7

Интенсивность окраски увеличивается с возрастом дерева; это особенно заметно у ядровых пород; в оптимальных условиях роста для данной породы окраска бывает более яркой. Древесина многих пород изменяет цвет под влиянием воздуха и света. Изменение цвета часто свидетельствует о том, что начинается процесс загнивания древесины, пораженной грибами. Цвет древесины один из важных показателей ее декоративных свойств. Под водой древесина дуба сильно темнеет в результате соединения дубильных веществ с солями железа. Этой же причиной объясняется появление черных полос и пятен на поверхности дубовых пиломатериалов при распиловке сырой древесины. Заболонь сосны после сплава иногда приобретает желтую окраску, а древесина березы — оранжевую. Различия в цвете древесины используются при диагностике пород.

блеск древесины

Блеск древесины проявляется в ее способности направленно отражать световой поток. Как известно, строго направленное отражение и, следовательно, наибольший блеск, наблюдаются при освещении идеально гладких, зеркальных поверхностей. В отличие от них матовые поверхности, имеющие однородные неровности, рассеивают отраженный световой поток не направленно, а риффузно, равномерно во все стороны. Поверхности даже самым тщательным образом обработанной древесины очень далеки от зеркальных.

Если на продольных разрезах древесины встречаются участки со сравнительно небольшими структурными неровностями, появляются блики, отсветы. Такой способностью в значительной мере зеркально отражать свет обладают сердцевинные лучи на радиальных разрезах древесины произрастающих у нас пород: клена, платана, бука, ильма, дуба, кизила, белой акации и айланта. Шелковистый блеск свойственен древесине бархатного дерева. Из иноземных пород особенно заметным блеском отличается древесина сатинового дерева и махагони (красного дерева). Зрительное восприятие блеска древесины сильно зависит от характера освещения, состояния поверхности древесины и других факторов. Полную количественную характеристику блеска древесины, адекватную зрительным ощущениям, дать очень трудно. Однако для технических целей (например, дефектоскопии) очень важна хотя бы не полная, но объективная оценка блеска древесины по какому-либо физическому параметру.

Измерить блеск древесины можно специальными приборами, определяющими долю зеркально отраженного света в общем световом блеске. На этом принципе основан, в частности, фотоэлектрический блескомер ФБ-2. Основные части прибора — фотометрическая головка, показывающий измерительный прибор (микроамперметр М-95) и блок питания с шунтирующими потенциометрами. Пучок параллельных лучей света из осветителя головки под углом 45° падает на исследуемую поверхность. Зеркально отраженные лучи через систему линз и диафрагму попадают на селеновый фотоэлемент, находящийся в приемном тубусе, также наклоненном под углом 45° к поверхности. В цепи фотоэлемента возникает фототок тем больший, чем выше степень блеска, которая измеряется в условных единицах (процентах). Наибольшая степень блеска была установлена у древесины осины, наименьшая — у фисташки (ядро).

данные о блеске древесины

Порода Степень блеска, поверхности, % Относительный показатель блеска (по отношению к радиальной поверхности)
радиальной тангенциальной радиальной тангенциальной
Осина 16,27 14,0 1,0 0.9
Рябина (заболонь) 14,00 0,86
Ива (заболонь) 13,80 0,85
Сосна (заболонь) 13,75 12,70 0,82 0,78
Липа 11,87 10,35 0,73 0,64
Явор 11,70 12,10 0,72 0,74
Пихта 11,70 10,50 0,72 0,65
Ель 11,63 11,36 0,71 0,70
Береза 11.20 11,60 0,69 0,71
Клен 11,10 8,20 0,68 0,50
Ольха 10,62 8,62 0,65 0,53
Бук 8,28 7,56 0,51 0,47
Ясень (ядро) 7,78 7,24 0,48 0,44
Ильм (ядро) 7,80 7.55 0,48 0,47
Дуб 6,79 5,90 0,42 0,36
Бархатное дерево 6,40 6,10 0,39 0,37

Данные, содержащиеся в табл. 13, свидетельствуют о том, что при использованном способе измерения блеска показатели существенно зависят от колориметрических характеристик древесины. Чем светлее древесина, т. е. чем больше р, тем больше степень блеска. Блеск увеличивается с уменьшением длины волны и чистоты цвета Р. Эти зависимости довольно четко проявляются у хвойных пород. В то же время обычно отмечаемая роль сердцевинных лучей в придании блеска древесины сильно преувеличена. Например, у такой породы, как дуб, несмотря на развитые многочисленные сердцевинные лучи, на радиальной поверхности блеск оказался очень малым. Очевидно, доля света, более или менее направленно отраженного сердцевинными лучами, оказалась небольшой по сравнению с частью светового потока, диффузно рассеянного остальной поверхностью, имеющей значительные структурные неровности.

текстура древесины

Текстурой называют рисунок, образующийся на поверхности древесины вследствие перерезания анатомических элементов. Чем сложнее строение древесины и разнообразнее сочетание отдельных элементов, тем богаче текстура. Древесина хвойных пород, отличающаяся простым строением, характеризуется в большинстве случаев и однообразной текстурой. Древесина лиственных пород, имеющая более сложное строение, отличается в ряде случаев разнообразной текстурой, которая зависит главным образом от наличия в составе древесины элементов, хорошо видимых невооруженным глазом — крупных сосудов, более или менее широких сердцевинных лучей, особенно, если они темнее основного фона древесины.

Таким образом, текстура зависит от ширины годичных слоев, разницы в окраске между ранней и поздней древесиной, сердцевинных лучей (бук, платан), крупных сосудов (ясень, бархатное дерева) направления волокон волнистая или свилеватая древесина. Очень большое значение имеет направление разреза. Так, если текстура определяется контрастом между ранней и поздней древесиной, более красивый рисунок получается на тангенциальном разрезе; сердцевинные лучи создают особенно красивую текстуру на радиальном разрезе.

Древесину с красивой текстурой на радиальном разрезе дают произрастающие в нашей стране платан, бук, клен остролистный, полевой явор, ильм, карагач и дуб, на тангенциальном разрезе — ясень, бархатное дерево, каштан съедобный, орех грецкий, дуб, ильм, карагач, вяз, тисс и лиственница. Кольцесосудистые лиственные породы, имеющие хорошо заметные сердцевинные лучи, дают красивую текстуру и на радиальном и на тангенциальном разрезах (дуб, ильм, карагач). Особенно причудливая текстура наблюдается иногда у древесины капов со свилеватым строением.

Текстура, так же как цвет и блеск, определяет декоративную ценность древесины. Прозрачная отделка древесины лаками способствует проявлению текстуры. Своеобразная текстура получается при неравномерном прессовании, лущении древесины ножом с волнистым лезвием и при лущении под углом к направлению волокон.

макроструктура древесины

Под макроструктурой разумеются такие особенности строения древесины, которые можно исследовать простейшими оптическими средствами или которые доступны невооруженному глазу. При оценке макроструктуры определяют ширину годичных слоев и степень равнослойности древесины, содержание поздней древесины в годичных слоях, равноплотность древесины, а также величину и характер распределения естественных неровностей, образовавшихся вследствие перерезания анатомических элементов. Показателем, характеризующим ширину годичных слоев, служит число слоев, приходящееся на 1 см отрезка, отмеренного по радиальному направлению на торцовой поверхности образца. Степень равнослойности обычно оценивают по разнице в числе годичных слоев на двух таких соседних отрезках. Содержание поздней древесины определяется соотношением в процентах между суммарной шириной зон поздней древесины и общей протяженностью (в радиальном направлении) участка измерения, включающего целое число слоев.

Вполне очевидно, что определение указанных показателей может быть успешно проведено на древесине пород, отличающихся хорошей видимостью годичных слоев и четкой границей между ранней и поздней древесиной в пределах каждого годичного слоя. Поэтому у некоторых пород можно определить и ширину годичных слоев и процент поздней древесины (хвойные и кольцесосудистые лиственные), у части рассеяннососудистых можно установить только ширину слоев, а у остальных пород определить этот показатель трудно. Число годичных слоев в 1 см и процент поздней древесины определяют следующим образом. На гладко зачищенном торце отмечают границы крайних целых годичных слоев на участке, равном примерно 2 см, и подсчитывают число слоев N. Расстояние l между отметками измеряют с точностью 0,5 мм. Число п годичных слоев в 1 см вычисляется с точностью до половины слоя.

 

В каждом годичном слое между отметками измеряют затем ширину поздней зоны δ измерительной лупой с точностью 0,1 мм, полученные величины складывают и процент т поздней древесины подсчитывают с точностью до 1 % где ∑δ — общая ширина поздних зон; l — общее протяжение тех годичных слоев, в которых измерялась ширина поздней зоны.

Как указывалось ранее, ширина годичных слоев и процент поздней древесины у разных пород различны, изменяются по высоте и радиусу ствола, зависят от условий произрастания. Влияние этих показателей макроструктуры на свойства древесины будет рассмотрено далее. Поверхности древесины, как бы тщательно они не обрабатывались режущими инструментами, всегда будут иметь те или иные неровности, образованные перерезанием полых анатомических элементов. Естественно, что наибольшие неровности наблюдаются в древесине лиственных пород с крупными сосудами (дуба, ясеня и др.). Древесину этих пород часто используют в качестве облицовочного материала. Для соблюдения высокого качества отделки высота неровностей при создании полированных поверхностей не должна превышать 16 μ. Поскольку радиус полостей сосудов у большинства пород, используемых для декоративных целей, значительно больше этой величины при отделке древесины, до нанесения основного покрытия проводят специальную операцию — порозаполнение. Для обоснования такой технологической операции важно знать величину и характер распределения неровностей на продольных разрезах древесины указанных пород.

При измерении неровностей более 60 μ следует использовать прибор для контроля чистоты поверхности древесины типа ТСП-4. Равноплотность древесины характеризует равномерность распределения механических тканей по ширине годичного слоя. Малой равноплотностью обладают лиственница, сосна, дуб, ясень и другие породы. Высокой равноплотностью отличаются самшит, груша, граб, клен, ольха, осина, липа и ряд других пород.

плотность древесины

Плотность материала характеризуется отношением массы тела к объему, поэтому плотность древесины должна представлять собой именно объемную массу, а не объемный вес (как это до сих пор встречается в справочной и учебной литературе). Дело в том, что значение «веса» не может быть постоянным для разных географических точек Земли (зависит от ускорения свободного падения). Следовательно, принципиально неправильно характеризовать свойство древесины переменным показателем.Плотность (раньше применялся термин «удельный вес») древесинного вещества, которое образует оболочки клеток, мало зависит от породы; это объясняется практически одинаковым химическим составом древесины различных пород. Относительная плотность древесинного вещества представляет собой безразмерную величину, равную отношению плотности рд совокупности веществ, слагающих клеточную оболочку, к плотности воды при 3,98° С:

Имеются различные способы определения величины d. Например, этот показатель можно установить путем погружения очень тонких (микротомных) срезов древесины в раствор азотнокислого кальция разной концентрации; плотность раствора, в котором срезы останутся во взвешенном состоянии, будет равна плотности древесинного вещества. В зависимости от способа определения значения d несколько различаются. По данным различных авторов, d находится в пределах 1,499—1,564 и в среднем принимается равной 1,54. Плотность древесины определяется по формуле:где pw — плотность древесины при данной влажности W, кг/см3; mw — масса образца древесины при влажности W, кг; Vw — объем древесины при влажности W, м3.

Для экспериментального определения плотности древесины используют образцы в виде прямоугольной призмы основанием 20X20 мм и высотой (вдоль волокон) 30 мм. Массу образца можно установить единственным методом — взвешиванием на рычажных весах. Взвешивание проводится на весах с точностью до 0,001 г. Объем образца может быть определен двумя способами: по трем линейным измерениям (ширине, толщине и высоте) и специальным прибором — объемомером. Кроме того, необходимо установить влажность образца в момент испытаний и иногда коэффициент объемного разбухания. Для этого приходится образец доводить в сушильном шкафу до абсолютно сухого состояния и измерять его массу (иногда объем).

Для определения объема по первому методу ширину и толщину образца измеряют посередине высоты, а высоту — между центрами оснований. Измерение проводят каким-либо мерительным инструментом (микрометром, штангенциркулем, прибором с индикаторами часового типа и т. д.) с точностью до 0,01 мм. Объем образца равняется произведению полученных трех величин и выражается в долях кубического метра. Вполне очевидно, что точность определения объема образца по описанному способу зависит от тщательности изготовления образца и может снижаться, если образец по форме отличается от прямоугольного параллелепипеда. При использовании объемомера образец может иметь любую форму, так как прибор основан на измерении объема несмачивающей древесины жидкости после погружения в нее образца.

Подставив найденные значения mw и Vw в формулу, плотность вычисляют с точностью до 1 кг/м3. Плотность существенно зависит от влажности древесины. В справочной литературе обычно приводятся данные о плотности древесины при влажности 15% (p15). Иногда в расчетах участвуют значения плотности древесины в абсолютно сухом состоянии. Часто приходится оперировать данными о плотности и при других значениях влажности. Указанные показатели можно определить непосредственно экспериментальным путем по массе и объему образца, соответствующей заданной влажности.

Однако часто бывает достаточно определить плотность при любой влажности ниже или выше предела гигроскопичности, а затем, используя пересчетные формулы, получить сначала значение р15, а затем искомую величину плотности при заданной влажности. Если в момент испытаний влажность образца находилась в диапазоне от нуля до предела гигроскопичности (т. е. до 30%) по любому найденному значению плотности можно вычислить плотность при влажности 15%

Для многих расчетов очень удобно иметь характеристику плотности древесины, не зависящую от ее влажности,— условную плотность древесины. где mо — масса образца древесины в абсолютно сухом состоянии, кг; Vmax — объем образца при влажности выше предела гигроскопичности, м3.

Экспериментальным путем условную плотность древесины определяют на образцах (20X20X30 мм), выпиленных из предварительно выдержанных в воде (до приобретения максимального объема) заготовок. Измеряют длину, ширину и толщину каждого образца и на основании этих данных определяют Vmax. Затем образцы сушат и устанавливают массу в абсолютно сухом состоянии— mо. Подставив найденные значения в формулу, вычисляют русл с точностью до 1 кг/м3. Величина условной плотности очень близка к величине плотности древесины в абсолютно сухом состоянии.

Величина плотности древесины различных пород изменяется в очень широких пределах: среди наших пород древесину с очень малой плотностью имеет пихта сибирская (380), ива белая (420) и др., а наиболее плотную — самшит (970), береза железная (980), саксаул (1050) и ядро фисташки (1110). По плотности древесины при 15% -ной влажности все наши породы можно разделить на три группы:

породы малой плотности (плотность 550 и менее); к этой группе из хвойных пород относятся сосна, ель (все виды), пихта (все виды), кедр (все виды), можжевельник обыкновенный, из лиственных — тополь (все виды), липа (все виды), ива (все виды), осина, ольха черная и белая, каштан посевной, орех белый, серый и маньчжурский, бархат амурский;

породы средней плотности (плотность 560—750); в эту группу входят из хвойных пород лиственница (все виды) тисс, из лиственных — береза бородавчатая, пушистая, желтая и черная, бук восточный и европейский, вяз, груша, дуб летний, восточный, болотный, монгольский, ильм, карагач, клен (все виды) , лещина, орех грецкий, платан, рябина, хурма, яблоня, ясень обыкновенный и маньчжурский;

породы высокой плотности (плотность 760 и выше): акация белая и песчаная, береза железная, гледичия каспийская, глоговина, гикори белый, граб, дзельква, дуб каштанолистный и араксинский, железное дерево, земляничное дерево, кизил, маклюра, саксаул белый, самшит, фисташка и хмелеграб.

Среди иноземных пород есть как с очень малой (например, бальза из тропической зоны Южной Америки, 100—130), так и с очень высокой плотностью (например, бакаут с плотностью 1350). Средние значения плотности p15 и русл для наиболее распространенных пород.

средние значения плотности р15 и русл.

Порода Плотность p15 кг/м3 Условная плотность Русл кг/м3 Порода Плотность p15 кг/м3 Условная Русл кг/м3
Лиственница 670 520 Клен 700 550
Сосна обыкновенная 510 400 Ясень обыкновенный 690 550
Ель 450 360 Бук 680 530
Кедр (сосна кедровая) 440 350 ВязБереза 660640 520500
Пихта сибирская 380 300 Орех грецкий 600 470
Граб 810 630 Ольха 530 420
Акация белая 810 630 Осина 500 400
Груша 720 570 Липа 500 400
Дуб 700 550 Тополь 460 360

Есть более подробные таблицы плотности древесины с указанием вида древесной породы и района ее произрастания. Приводимые в них данные представляют собой средние показатели, вычисленные по сильно изменчивым величинам.

Иногда необходимо определить пористость древесины, характеризующую объем внутренних пустот (полостей клеток, межклеточных пространств), выраженный в процентах от объема древесины в абсолютно сухом состоянии. Зная относительную плотность древесинного вещества (1,54) и плотность древесины в абсолютно сухом состоянии ро, можно подсчитать величину пористости.

С увеличением плотности от 300 до 800 кг/м3 пористость снижается от 81 до 55%.

проницаемость древесины жидкостями и газами

Способность древесины пропускать жидкости и газы имеет важное значение при разработке режимов пропитки и сушки древесины, выборе материала для изготовления бочарной тары, деревянных судов, трубопроводов и других целей. При испытаниях в качестве жидкости обычно используют воду, а в качестве газа — воздух.

Водопроницаемость зависит от породы древесины, положения в стволе и направления. В связи с различной длиной водопроводящих элементов древесины хвойных (трахеиды) и лиственных (сосуды) пород водопроницаемость вдоль волокон у этих двух групп резко различна: так, под давлением 1 ат через отрезок ствола 1 м у лиственных пород профильтровывается через 1 см2 поперечного сечения 50—150 см3 воды за 1 ч, а у хвойных всего 5—50 см3, т. е. в 3—10 раз меньше. В пределах одной и той же породы водопроницаемость заболони выше, чем ядра и спелой древесины. В среднем через образцы из заболони пихты толщиной 10 мм в течение 48 ч профильтровалось 58,8 см3 воды, из ели 7,4 см3, а через образцы такой же толщины из спелой древесины соответственно 7,4 и 1,5 см3, т. е. в, 5—8 раз меньше.

Из перечисленных выше факторов особенно важно направление, так как водопроницаемость вдоль волокон резко отличается от проницаемости поперек волокон. Через отрезок пихты длиной 8 см столб воды 50 см3 фильтровался по направлению волокон в течение 1 ч; поперек волокон в тангенциальном направлении при том же давлении через образцы толщиной I—3,5 см за 20 ч проходило всего 4—10 см3 воды, т. е. в несколько сотен раз меньше. Поперек волокон водопроницаемость по радиальному направлению в среднем для большинства пород несколько больше, чем по тангенциальному. Здесь имеют значение особенности анатомического строения древесины разных пород: расположение и состояние пор на стенках элементов, количество и степень проницаемости сердцевинных лучей, состояние горизонтальных смоляных ходов и др., а также ее смолистость. Известно, что проницаемость водой древесины заболони сосны больше, чем древесины ядра: просачивание капельножидкой воды наблюдается только через древесину заболони. В то же время смолистость древесины ядра больше, чем заболони, причем смола в древесине ядра находится не только в смоляных ходах, на и в трахеидах.

Наиболее существенной причиной плохой водопроницаемости ядра является именно смолистость. Если удалить смолу из древесины ядра экстрагированием, водопроницаемость в радиальном направлении будет примерно такой же, как древесины заболони. Нагревание древесины ядра выше температуры плавления смолистых веществ повышает водопроницаемость древесины (в нагретом состоянии).

Основные показатели водопроницаемости — количество воды в кубических сантиметрах, прошедшее через образец за сутки при установившемся состоянии, и конечная средняя влажность образца. Дополнительной характеристикой может служить диаграмма водопроницаемости (на оси абсцисс откладывается время в сутках, а на оси ординат — количество поглощенной и прошедшей через образец воды в граммах).

При проникновении газов в древесину необходимо различать два случая: проникновение газов при атмосферном давлении, или газопоглощение древесины, и прохождение газов через древесину под давлением, или газопроницаемость древесины. Первый случай имеет существенное практическое значение при дезинфекции древесины, зараженной насекомыми или грибами, а также в некоторых случаях службы древесины (химические заводы) и при газовом крашении ее; второй случай встречается в некоторых видах тары (чанах, пивных бочках и т. д.)

Хлор, сернистый ангидрид и хлорпикрин при атмосферном давлении в течение суток проникают в древесину сосны при 10%-ной влажности в радиальном направлении на глубину не более 1—2 мм, а сероуглерод, пары формалина и уксусной кислоты — на глубину до 3 мм; вдоль волокон те же газы проникали на глубину около 10 мм. В сухую древесину сосны сероводород проникает легко без добавочного давления и предварительного вакуума; легче сероводород проникает вдоль волокон, труднее — в радиальном направлении; в ядровую древесину труднее, чем в заболонную. Из трех пород наиболее трудно проницаемой для сероводорода оказалась ольха, а наиболее легко — береза; сосна заняла промежуточное положение. Полная гибель всех личинок в древесине при концентрации сероводорода 3,6% достигается через 24 ч; при 5,6% — через 9 ч и 10,5% — через 5 ч. Под избыточным давлением газы проникают на значительно большую глубину.

Фильтрация под давлением очищенного от водяных паров воздуха через древесину разных пород (сосны, ели, дуба, бука, березы) при влажности ее 10— 12% увеличивается с повышением давления (зависимость параболическая) и проницаемость древесины сосны для газов в радиальном направлении больше, чем в тангенциальном в 2—5 раз, ели — в 10 раз. Примерно такие же соотношения для заболони сосны и ели. Наибольшая проницаемость обнаруживается при движении газов вдоль волокон.

Газопроницаемость определяется количеством (объемом) прошедшего воздуха (см3) через 1 см2 поверхности образца в 1 сек. Величина газопроницаемости зависит от давления, свойств древесины и газа, а также их состояния, поэтому в качестве критерия газопроницаемости рекомендуется использовать коэффициент газопроницаемости Кг (см2/сек. ати) где V — газопроницаемость, см31см2 х сек; р — манометрическое давление, ати; h — высота образца, см. Испытания на газопроницаемость требует значительно меньше времени, чем длительные испытания проницаемости жидкостями. В ряде случаев при тесной корреляции между указанными свойствами можно использовать определение газопроницаемости в качестве экспресс-метода оценки проницаемости древесины жидкостями.

Механические свойства древесины.

общие сведения о механических свойствах древесины При использовании древесины в качестве конструкционного и поделочного материала, а также в технологических процессах обработки проявляются ее механические свойства, характеризующие способность древесины сопротивляться механическим усилиям. Показатели этих свойств древесины определяют путем специальных экспериментов — механических испытаний, при которых создают различные напряженные и деформированные состояния образцов древесины. Задачи механических испытаний […]

нет комментариев

Электромагнитные свойства древесины.

Свойства древесины, проявляющиеся при воздействии электромагнитных излучений. Различные виды излучений, представляющих собой электромагнитные колебания, образуют спектр, охватывающий огромный диапазон длин волн. Наибольшую длину имеют радиоволны (от десятков километров до миллиметров). Действие на древесину этих видов излучений частично изложено при рассмотрении электрических свойств древесины. Ниже будут рассмотрены свойства древесины, проявляющиеся при действии излучений, занимающих остальную часть […]

нет комментариев

Звуковые свойства древесины

показатели, характеризующие распространение звука в древесине Как известно, звук представляет собой колебания, волнообразно распространяющиеся в упругих средах. Особенности распространения звуковых колебаний зависят от физических свойств среды и характеризуются рядом показателей. Скорость распространения звука тем больше, чем меньше плотность среды р и выше ее жесткость (модуль упругости Е). При распространении волны в направлении колебательного движения частиц […]

нет комментариев

Электрические свойства древесины.

электропроводность древесины Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное […]

нет комментариев

Тепловые свойства древесины

теплоемкость древесины Способность древесины поглощать тепло характеризуется теплоемкостью. В качестве меры используется удельная теплоемкость с, которая представляет собой количество тепла, необходимое для того, чтобы нагреть древесину массой 1 кг на 1о С. Размерность удельной теплоемкости — ккал/кг х град или в международной системе единиц СИ-дж/кг х град. В пределах изменения температуры от 0 до 100° […]

нет комментариев

Влажность древесины

влага в древесине Наличие влаги в древесине обусловлено нормальной жизнедеятельностью живого растущего организма. В древесине срубленного дерева содержание влаги (в зависимости от условий хранения, и эксплуатации изделий) может увеличиваться или уменьшаться. В большинстве случаев практики влагу из древесины удаляют, чтобы избежать ряда отрицательных явлений. Для количественной характеристики содержания влаги в древесине используют показатель влажности древесины. […]

нет комментариев

Физические свойства древесины

Свойства древесины, проявляющиеся при взаимодействии ее с внешней средой, но не связанные с изменением химического состава древесинного вещества, принято называть физическим. Из этого обширного ряда свойств несколько условно выделяются свойства древесины, обнаруживающиеся под действием механических усилий. Ниже рассматриваются физические свойства, показатели которых определяются методами, регламентированными действующими стандартами. Кроме того, освещается ряд пока мало распространенных, но […]

нет комментариев

Химические свойства древесины

химический состав древесины Древесина состоит из органических веществ, в состав которых входят углерод С, водород Н, кислород О и немного азота. Элементарный химический состав древесины разных пород практически одинаков. В среднем абсолютно сухая древесина независимо от породы содержит 49,5% углерода, 44,2% кислорода (с азотом) и 6,3% водорода. Азота в древесине содержится около 0,12%. Элементарный химический […]

нет комментариев

Макроскопическое строение древесины

макроскопическое строение древесины – заболонь, ядро, спелая древесина У большинства наших лесных пород древесина окрашена в светлые цвета, причем у одних пород нет разницы в окраске всей массы древесины, а у других — периферическая, прилегающая к коре часть древесины окрашена светлее. Эта более светлая часть ствола называется заболонью. Центральная темноокрашенная часть ствола называется ядром (см. […]

нет комментариев

Строение древесины

строение древесины – части растущего дерева Растения делятся на низшие и высшие. К низшим относятся бесстебельные растения: бактерии, водоросли, грибы, лишайники. К высшим растениям принадлежат мхи, папоротники, голосемянные и покрытосемянные. Древесные растения, которые дают древесину как материал для разнообразного применения, входят в состав двух последних групп. Широко распространенные на территории России хвойные породы относятся к […]

нет комментариев

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Химические свойства древесины

изделия из массива на заказ

химический состав древесины

Древесина состоит из органических веществ, в состав которых входят углерод С, водород Н, кислород О и немного азота. Элементарный химический состав древесины разных пород практически одинаков. В среднем абсолютно сухая древесина независимо от породы содержит 49,5% углерода, 44,2% кислорода (с азотом) и 6,3% водорода. Азота в древесине содержится около 0,12%. Элементарный химический состав древесины ствола и ветвей мало различается. Условия произрастания также практически не отражаются на содержании основных элементов.

Кроме органических веществ, в древесине есть минеральные соединения, дающие при сгорании золу, количество которой колеблется в пределах 0,2—1,7%; однако у отдельных пород (саксаула, ядра фисташки) количество золы достигает 3—3,5%. У одной и той же породы количество золы зависит от части дерева, положения в стволе, возраста и условий произрастания. Больше золы дают кора и листья; так, стволовая древесина дуба дает 0,35%, листья — 3,5% и кора — 7,2% золы. Древесина ветвей содержит золы больше, чем древесина ствола; например, ветви березы и ели дают при сгорании 0,64 и 0,32% золы, а стволовая древесина — 0,16 и 0,17% золы. Древесина верхней части ствола дает золы больше, чем нижняя; это указывает на большое содержание золы в древесине молодого возраста; так, древесина бука в возрасте 10, 20 и 50 лет давала при сгорании 0,56; 0,46 и 0,36% золы.

В состав золы входят главным образом соли щелочноземельных металлов. В золе из древесины сосны, ели и березы содержится свыше 40% солей кальция, свыше 20% солей калия и натрия и до 10% солей магния. Часть золы (10—25%) растворима в воде (главным образом, щелочи — поташ и сода). В прежнее время поташ К2СО3, употребляемый в производстве хрусталя, жидкого мыла и других веществ, добывали из древесной золы. Зола от коры содержит больше солей кальция (до 50% у ели), но меньше солей калия, натрия и магния. Входящие в состав древесины и названные выше основные химические элементы (С, Н и О) образуют сложные органические вещества.

Главнейшие из них образуют клеточную оболочку (целлюлоза, лигнин, гемицеллюлозы — пентозаны и гексозаны) и составляют 90—95% массы абсолютно сухой древесины. Остальные вещества называются экстрактивными, т. е. извлекаемыми различными растворителями без заметного изменения состава древесины; из них наибольшее значение имеют дубильные вещества и смолы. Содержание основных органических веществ в древесине в некоторой мере зависит от породы. Это видно из табл. 7.

содержание органических веществ в древесине разных пород

Органические вещества Содержание органических веществ, % от массы абсолютно сухой древесины
сосны ели пихты бука березы осины
Растворимые в эфире….. 4,91 1,87 0,87 0,45 1,50 1,51
Растворимые в горячей воде 2,98 3,19 1,40 3,41 2,30 2,96
Целлюлоза, свободная от пентозанов 56,50 55,17 48,40 47,75 47,20 47,80
Лигнин 27,05 27,00 29,89 27,72 19,10 21,67
Пентозаны 10,45 11,24 5,30 23,40 28,70 23,52

В среднем можно принять, что в древесине хвойных пород содержится 48—56% целлюлозы, 26—30% лигнина, 23—26% гемицеллюлоз (10—12% пентозанов и около 13% гексозанов); в то же время древесина лиственных пород содержит 46—48% целлюлозы, 19—28% лигнина, 26—35% гемицеллюлоз (23—29% пентозанов и 3—6% гексозанов). Из этих данных видно, что древесина хвойных пород содержит повышенное количество целлюлозы и гексозанов, а для древесины лиственных пород характерно высокое содержание пентозанов. В клеточной оболочке целлюлоза находится в соединении с другими веществами; особенно тесная связь, характер которой до сего времени не ясен, наблюдается между целлюлозой и лигнином. Ранее считали, что лигнин лишь механически примешан к целлюлозе; однако в последнее время все более приходят к убеждению, что между ними существует химическая связь.

Химический состав ранней и поздней древесины в годичных слоях, т. е. содержание целлюлозы, лигнина и гемицеллюлоз, практически одинаков; ранняя древесина содержит лишь больше веществ, растворимых в воде и эфире; это особенно характерно для лиственницы. По высоте ствола химический состав древесины меняется мало; так, в составе древесины дуба по высоте ствола не обнаружено практически ощутимых различий. У сосны, ели и осины в возрасте спелости обнаружено незначительное увеличение содержания целлюлозы и понижение содержания лигнина и пентозанов в средней по высоте части ствола. В древесине ветвей сосны, ели и осины содержится меньше целлюлозы (44—48% вместо 52—59%), но больше лигнина и пентозанов. Однако у дуба не обнаружено заметных различий в химическом составе древесины ствола и крупных ветвей; лишь в мелких ветвях найдено меньше дубильных веществ (8% в стволе и 2% в ветвях). Различие в химическом составе древесины заболони и ядра летнего дуба видно из данных табл. 8.

различие в химическом составе древесины заболони и ядра

Часть древесины Состав, % от массы в абсолютно сухом состоянии
целлюлозы, свободной от пентозанов лигнина пентозанов дубильных веществ золы
Заболонь 31,52 22,35 19,47 3,9 0,58
Ядро 32,91 21,07 24,42 10,1 0,20

Как видим из таблицы, заметное различие обнаружилось только в содержании пентозанов и дубильных веществ: в древесине ядра их больше (а золы меньше). Химический состав оболочек клеток камбия, вновь образовавшейся древесины и заболони, сильно различается: в элементах древесины резко возрастает содержание целлюлозы и лигнина (у ясеня с 20,2 до 4,6% в камбии, до 58,3 и 20,9% в заболони), но также резко снижается содержание пектинов и протеинов (с 21,6 и 29,4% в камбии и до 1,58 и 1,37% в заболони). Влияние условий произрастания на химический состав древесины изучено мало.

Содержание целлюлозы в древесине сосны убывает по мере ухудшения почвенных условий: в древостоях I бонитета — 58%; III бонитета — 56,8%; IV бонитета — 52,9% и V бонитета— 51,5%; аналогичное явление обнаружено и для древесины ели: в древостоях III бонитета — 52,1 % и IV бонитета 48,5%. Химический состав коры заметно отличается от химического состава древесины. Элементарный состав коры лжетсуги (%) характеризуется следующими данными: корка — углерода 54,7; водорода 6,4 и кислорода 38,8; луб — соответственно 53,3; 5,7 и 40,8. По сравнению с древесиной кора содержит больше золы, экстрактивных веществ и лигнина, но значительно меньше целлюлозы (почти в 3 раза) и пентозанов, причем резкого различия по содержанию пентозанов в коре хвойных пород (сосне, ели) и лиственных (березе, осине) не наблюдается. Химический состав коры некоторых пород приведен в табл. 9.

химический состав коры различных пород

Порода Часть коры Состав, % от массы абсолютно сухой коры
растворимых в воде целлюлозы без пентозанов лигнина пентозанов + гексозанов суберина
Сосна Луб 20,84 18,22 17,12 12,14 + 16,30 0,00
Корка 14,20 16,43 43,63 6,76+6,00 2,85
Ель Луб 33,08 23,20 15,57 9,65+9,30 0,00
Корка 27,91 14,30 27,44 7,10+7,70 2,82
Береза Луб 21,40 17,40 24,70 15,20+5,10 0,00
Осина Луб 31,32 8,31 27,70 11,80+7,00 0,91

 

способы получения и использования органических веществ древесины

ацетилцеллюлоза

В результате взаимодействия целлюлозы со смесью уксусного ангидрида и уксусной кислоты образуются уксуснокислые эфиры целлюлозы — ацетилцеллюлоза. Для получения ацетилцеллюлозы может быть использована облагороженная древесная целлюлоза, однако основным сырьем пока является хлопковая целлюлоза (линтер). Ацетилцеллюлозу употребляют для производства ацетатного шелка, целлона (негорючей пластмассы), лаков, кинопленки и других продуктов. Целлюлоза растворяется в аммиачном растворе окиси меди, образуя медноаммиачное комплексное соединение, которое используется для получения очень тонкого медноаммиачного волокна. При взаимодействии целлюлозы с водой в присутствии катализаторов происходит реакция гидролиза и образуется простейший сахар — глюкоза. В качестве катализаторов обычно используют минеральные кислоты (кислотный гидролиз).

гемицеллюлоза

Этим понятием объединяется группа веществ, близких по химическому составу к целлюлозе, но отличающихся от нее способностью легко гидролизоваться и растворяться в разбавленных щелочах. Гемицеллюлозы представляют собой главным образом полисахариды: пентозаны и гексозаны с пятью или шестью атомами углерода в основном звене. Степень полимеризации гемицеллюлоз значительно меньше, чем целлюлозы, т. е. цепочки молекул короче. При гидролизе полисахаридов гемицеллюлоз образуются простые сахара (моносахариды); гексозаны переходят в гексозы, а пентозаны — в пентозы. Обычно из древесины не получают гемицеллюлоз в виде товарных продуктов. Однако при химической переработке древесины они широко используются для получения многих ценных веществ. Например, при нагревании древесины с 12% -ной соляной кислотой почти все пентозаны (93—96%) переходят в простые сахара — пентозы — и после отщепления от каждой молекулы моносахарида трех молекул воды образуется фурфурол — продукт, широко применяемый в промышленности. В растущем дереве гексозаны — запасные вещества, а пентозаны выполняют механическую функцию.

лигнин

Кроме углеводов (целлюлозы и гемицеллюлоз), в состав клеточной оболочки входит ароматическое соединение — лигнин, которое отличается высоким содержанием углерода. Целлюлоза содержит 44,4% углерода, а лигнин 60—66%. Лигнин менее стоек, чем целлюлоза, и легко переходит в раствор при обработке древесины горячими щелочами, водными растворами сернистой кислоты или ее кислых солей. На этом основано получение технической целлюлозы. Лигнин получается в виде отходов при варке сульфитной и сульфатной целлюлозы, при гидролизе древесины. Содержащийся в черных щелочах лигнин в основном сжигается при регенерации.

Лигнин используется в качестве пылевидного топлива, заменителя дубильных веществ, в производстве крепителей формовочных земель (в литейной промышленности), пластических масс, искусственных смол, для получения активированного угля, ванилина и др. Однако вопрос о полном квалифицированном химическом использовании лигнина пока еще не решен. Из остальных органических веществ, содержащихся в древесине, наибольшее промышленное использование получили смолы и дубильные вещества.

смолы

Эту группу веществ принято делить на нерастворимые в воде смолы (жидкие и твердые) и камедесмолы, содержащие растворимые в воде камеди. Среди жидких смол наибольшее значение имеет живица, которую получают из древесины (иногда из коры) хвойных пород в результате подсочки. Подсочка сосны и кедра ведется следующим образом. Осенью на очищенном от грубой коры участке ствола специальными инструментами проводится вертикальный желобок, а с наступлением теплой погоды весной систематически снимаются направленные под углом 30° к желобку полоски коры и древесины и образуются так называемые подновки. Глубина подновок обычно 3—5 мм. Рана, наносимая дереву при подсочке, называется каррой (рис. 29).

Из перерезанных смоляных ходов живица, находящаяся под давлением 10— 20 атм, вытекает в подновки и по желобку направляется в приемник. После нанесения четырех-пяти подновок из конического приемника стальной лопаточкой выбирают живицу. Для увеличения выхода живицы применяют химические стимуляторы (хлорную известь или серную кислоту), которыми обрабатывают свежевскрытую поверхность древесины.

Подсочка ели ведется путем нанесения карр в виде узких продольных полос. Для получения живицы из лиственницы просверливают каналы в глубь ствола до встречи с крупными смоляными «карманами», которые часто образуются в нижней части ствола. Лиственничная живица высоко ценится и применяется в лакокрасочной промышленности для изготовления лучших сортов лаков и эмалевых красок. Пихтовая живица добывается из «волдырей», образующихся в коре. Живицу из проколотых «волдырей» выдавливают в переносные приемники. Пихтовая живица напоминает по своим свойствам канадский бальзам и находит применение в оптике, микроскопической технике и т. д.

В наибольших количествах добывается сосновая живица, которая представляет собой прозрачную смолистую жидкость с характерным сосновым запахом. На воздухе живица твердеет и превращается в хрупкую белесоватую массу — баррас. Полученная в результате подсочки сосновая живица содержит примерно 75% канифоли и 19% скипидара, остальное составляет вода. Живицу можно рассматривать как раствор твердых смоляных кислот (канифоль) в жидком терпентинном масле (скипидар). Переработка живицы осуществляется на канифольно-терпентинных заводах и заключается в отгонке с водяным паром летучей части — скипидара. Остающаяся нелетучая часть представляет собой канифоль.

Скипидар и канифоль можно получать путем экстракционной переработки пневого осмола — ядровой части сосновых пней, обогатившихся смолой за счет отгнивания малосмолистой заболони. В качестве растворителя чаще всего используют бензин. Полученный экстракт подвергают разгонке. Растворитель и скипидар отгоняются, а канифоль остается. Экстракционные продукты уступают по качеству скипидару и канифоли, полученным из живицы. Скипидар находит широкое применение как растворитель в лакокрасочной промышленности, для производства синтетической камфоры и других продуктов. Камфора в больших количествах используется в качестве пластификатора в производстве целлулоида, лаков и кинопленки.

Основной потребитель канифоли — мыловаренная промышленность, где она используется для изготовления хозяйственного мыла. В большом количестве используется канифольный клей для проклейки бумаг. Глицериновый эфир канифоли вводят в состав нитролаков для придания пленке блеска. Канифоль используется для приготовления электроизоляционных материалов, в производстве синтетического каучука и др. Большое промышленное значение имеет камедь лиственницы. Камедь экстрагируется из измельченной древесины кислой водой (концентрация уксусной кислоты 0,2%) при температуре 30°. После упаривания до концентрации 60—70% получают товарный продукт. Применяют ее в текстильном производстве для изготовления красок, в полиграфической, бумажной промышленности и др.

дубильные вещества, или танниды

Этим понятием объединяются все вещества, которые обладают свойствами дубить сырую кожу, придавая ей стойкость против гниения, эластичность, способность не разбухать. Наиболее богата дубильными веществами древесина ядра дуба (6 — 11%) и каштана (6—13%). В коре дуба, ели, ивы, лиственницы и пихты содержится от 5 до 16% таннидов. В наростах на листьях дуба — галлах содержится от 35 % до 75% таннидов (одной из разновидностей дубильных веществ). В листьях и корнях бадана содержание таннидов составляет 15-25%.

Тайниды растворимы в воде и спирте, обладают вяжущим вкусом, при соединении с солями железа дают темно-синюю окраску, легко окисляются. Дубильные вещества экстрагируют горячей водой из измельченной древесины и коры. Товарным продуктом является либо жидкий, либо сухой экстракт, который получают после упаривания раствора в вакуум-аппарате и сушки. Из древесных растений можно получать также эфирные масла, лакторезины и красящие вещества.

эфирные масла

Из древесины культивируемого на Кавказе камфорного лавра (Cinnamomun camphora) путем отгонки с водяным паром получают камфорное масло (выход масла 4%), которое идет на приготовление камфоры. Из хвои и шишек разных видов пихты добывают пихтовое масло, представляющее собой прозрачную, бесцветную ароматическую жидкость, быстро испаряющуюся на воздухе. Хвоя сибирской пихты содержит от 0,63 до 3%, а хвоя кавказской пихты 0,2% пихтового масла. Пихтовое масло имеет применение в фармацевтическом производстве, в парфюмерии и для приготовления лаков. Летучие эфирные масла хвойных пород сосны, ели, западной туи, обладают свойствами фитонцидности, т. е. способностью убивать микробов, находящихся в воздухе или в воде.

Лакторезины — млечные соки некоторых растений, близкие к смолам. К ним относятся каучук и гуттаперча. Каучук добывается из коры дерева Hevea brasiliensis и представляет собою аморфную массу от желтого до темного цвета, растворимую в сероуглероде, хлороформе, эфире и скипидаре. Гуттаперчу получают из некоторых тропических древесных пород (например, Isonandra gutta Hook и др.). В СССР (в Крыму, на Кавказе) акклиматизирована эвкоммия, в листьях и корнях которой содержится 4—6% гуттаперчи. Из отечественных пород гуттаперчу содержат в коре корней (до 7 %) бересклет бородавчатый и европейский. Очищенная гуттаперча представляет собой твердую массу бурого цвета, легко растворимую в сероуглероде, хлороформе и скипидаре. Из нее изготавливают клише для рисунков, изоляцию электрических кабелей и др.

Красящие вещества могут находиться как в древесине, так и в коре, листьях и корнях; в древесине встречаются красящие вещества красного, желтого, синего и коричневого цветов. Из произрастающих в нашей стране пород для окрашивания тканей и пряжи в желтый цвет местное население на Кавказе использует древесину маклюры, шелковицы, скумпии, кору граба, сумаха и хмелеграба, для окраски в красный цвет — сухую кору крушины, в коричневый — древесину скумпии, кожуру грецкого ореха и др.

 

основные химические реакции древесины, имеющие промышленное значение

Взаимодействие древесины с кислыми солями сернистой кислоты и щелочами происходит в процессах получения технической целлюлозы — основного полуфабриката в целлюлозно-бумажном производстве. Способы получения сульфитной и сульфатной целлюлозы описаны выше. Отходы целлюлозного производства находят применение в качестве сырья для вторичной химической переработки. Для изготовления некоторых видов бумаги может быть использована не только целлюлоза, но и остальные органические вещества, содержащиеся в древесине. Древесина в этом случае подвергается лишь механической переработке, в результате которой получается древесная масса. При истирании (дефибрировании) древесины, прижатой к абразивной поверхности быстро вращающегося камня, в присутствии воды образуется белая древесная масса, которая идет на приготовление бумаг, хорошо воспринимающих краску при печатании, но отличающихся малой прочностью. Если перед истиранием древесину пропарить, получается бурая древесная масса, используемая для получения прочной оберточной бумаги и отдельных видов картона.

Взаимодействие кислот с древесиной приводит к образованию простейших Сахаров из полисахаридов и используется в качестве основной реакции в гидролизном производстве. На современных гидролизных предприятиях, включающих целый комплекс химических производств, наиболее полно и рационально используются все составные части древесного сырья. Сырьем для гидролизного производства служат отходы лесопиления и деревообработки. Гидролиз древесины можно осуществлять двумя способами: 1) разбавленными минеральными кислотами при высокой температуре (под давлением) и 2) концентрированными кислотами при нормальной температуре (без давления). Наиболее широкое применение нашел первый способ. Сырье в виде опилок пли щепы поступает в гидролизаппарат — вертикальный цилиндр с конусообразными верхней и нижней частью. Вместе с древесиной в гидролизаппарат подается варочная кислота, представляющая собой 5%-ный водный раствор серной кислоты. Температура поднимается до 140—160° и происходит осахаривание (гидролиз) гемицеллюлоз. Затем начинается гидролиз целлюлозы при непрерывном поступлении в аппарат варочной кислоты, нагретой до 185°, и одновременном отборе гидролизата — водного раствора простых Сахаров. Давление в аппарате во время гидролиза поднимается до 15 атм. В конце варки вместо кислоты подается горячая вода для промывки нерастворимого остатка — гидролизного лигнина.

При охлаждении гидролизата образуются пары, из конденсата которых получают ряд продуктов. Наиболее ценный из них — бесцветная маслянистая жидкость с запахом подгоревшего хлеба — фурфурол, который применяется в производстве пластмасс, синтетических волокон типа нейлона, смол, для очистки смазочных масел, изготовления медицинских препаратов (фурацилин и др.), красителей, средств для борьбы с сорняками, грибами и насекомыми и для других целей. Фурфурол можно получать в качестве основного продукта при гидролизе богатых пентозанами древесины лиственных пород (березы, осины) и сельскохозяйственных растительных отходов.

Нейтрализованный известковым молоком гидролизат (сусло) поступает в бродильное отделение. Там под действием ферментов винокуренных дрожжей содержащиеся в сусле простые сахара — гексозы (глюкоза и сахара из гексозан) — сбраживаются и образуют этиловый спирт и углекислый газ. Выделяющийся при брожении углекислый газ улавливается и используется для получения жидкой углекислоты и сухого льда. Этиловый спирт находит применение в производстве синтетического каучука и во многих других отраслях промышленности. Однако в настоящее время признано более экономически целесообразным удовлетворять основную потребность в спирте синтетическим спиртом, получаемым из этилена нефтяных газов.

Остатки после отгонки спирта (барда) содержат неразложившиеся пентозы, которые используются для выращивания кормовых дрожжей, богатых витаминами и белком. Введение их в рацион птиц и животных резко сокращает падеж, увеличивает скорость прироста мяса и т. д. Учитывая важное значение кормовых дрожжей для повышения продуктивности животноводства, птицеводства и рыбоводства, можно отказаться от получения спирта и использовать для выращивания дрожжей весь гидролизат. При этом необходимо применять такие культуры дрожжей и дрожжеподобных грибов, которые способны усваивать не только пентозы, но и гексозы.

Термическое разложение (пиролиз) происходит при нагреве древесины без доступа воздуха (сухая перегонка) или при ограниченном поступлении воздуха (газификация). При сухой перегонке древесины вначале подведенным извне теплом удаляется вода (при температуре до 120—150°) и частично разлагается древесина с выделением углекислого газа, окиси углерода и паров уксусной кислоты (при температуре 150—270°). Затем при температуре 275° происходят главные реакции распада веществ, слагающих древесину. Эта фаза процесса протекает с бурным выделением тепла. Последняя стадия пиролиза с дополнительным внешним нагревом происходит при температуре 300— 400° и состоит в прокаливании угля для удаления остатка – летучих веществ. В результате сухой перегонки образуются твердые (уголь), жидкие (жижка) и газообразные продукты.

При термическом разложении древесины сосны, ели, березы и бука в условиях атмосферного давления, конечной температуры 400° С и продолжительности нагрева 8 ч получается примерно 32—38% угля, 45—50% жижки и 15—20% газов (включая потери). Наибольшее значение сейчас имеет уголь, который свободен от минеральных примесей (серы).

Уголь находит применение в металлургии в качестве топлива при выплавке цветных металлов, для получения сероуглерода, используемого для выработки вискозного волокна, для производства активированного угля, электродов и т. д. Древесный уголь получается в качестве основного продукта в углежжении. Жижка, или водный дистиллят, представляет собой водный раствор продуктов разложения древесины. Из смолы, образующейся после отстаивания жижки, получают фенолы для производства пластмасс, антиокислитель бензина, флотационные масла для обогащения руд и другие продукты. Жижка также используется для получения метилового спирта и уксусной кислоты. Наибольшее количество этих продуктов получается из древесины лиственных пород.

В связи с развитием способов получения синтетических метилового спирта и уксусной кислоты значение этих продуктов сухой перегонки древесины снизилось. Газы, образующиеся при пиролизе древесины, используются в качестве топлива для обогрева реторт (аппаратов для сухой перегонки). Кора при сухой перегонке дает больше смолы, угля и газов, но меньше уксусной кислоты и метилового спирта. Выход основных продуктов сухой перегонки древесины и коры в процентах от массы сырья в абсолютно сухом состоянии указан в табл. 10. Здесь приведены данные для сосны и березы. Интересны имеющиеся предложения по сочетанию гидролиза древесины с сухой перегонкой. Пиролиз березовой древесины, предварительно пропитанной 1%-ной серной кислотой, позволяет получить значительное количество фурфурола.

выход основных продуктов при сухой перегонке

Продукты Выход, %, из
сосны березы
древесины коры древесины коры
Уголь 37,90 42,50 33,0 37,40
Газы 18,20 19,80 15.3 18,50-
Уксусная кислота 3,10 0,85 6,9 2,55
Метиловый спирт 0,85 0,31 1,6 0,69
Смола 7,00 8,40 6,3 14,90

Газификация древесины в энергохимических установках, позволяющих получать генераторный газ и улавливать продукты пиролиза, может служить одним из способов утилизации древесных отходов. Окисление древесины в процессе горения имеет значение, если она используется в виде топлива. Качество древесины как топлива оценивается теплотворной способностью. Массовой теплотворной способностью называется количество тепла, которое выделяется при полном сгорании единицы массы — 1 кг древесины.

где С, Н и О — содержание углерода, водорода и кислорода, %; W — относительная влажность древесины. Эта формула дает лишь приближенные значения, отклоняющиеся от действительных на 5—10%. Точно теплотворная способность определяется лабораторным путем в калориметрах по стандартной методике Массовая теплотворная способность практически не зависит от породы древесины; это объясняется одинаковым химическим составом древесины разных пород. Так, по имеющимся данным, массовая теплотворная способность абсолютно сухой древесины колеблется от 4700 до 5100 ккал. Теплотворная способность абсолютно сухой коры березы выше, чем у древесины на 17%, а ольхи на 12%.

В практике дрова оценивают не по массе (весу), а по объему; в этом случае важна объемная или удельная теплотворная способность древесины, т. е. количество тепла, получаемое при сгорании единицы объема древесины. Удельная теплотворная способность может быть получена умножением массовой теплотворной способности на плотность древесины.

Теплотворная способность в большой мере зависит от влажности: с увеличением влажности древесины она падает. Наивысшая температура, которая может быть достигнута при идеальных условиях горения (жаропроизводительная способность древесины), также может быть подсчитана теоретически. В лабораториях она определяется пирометрами. Так, для абсолютно сухой древесины бука температура горения равна 1720°. Однако практически из-за потерь в топке такая температура не может быть достигнута; действительная температура горения древесины может быть принята равной 1000—1100°. В настоящее время значение древесины как топлива уменьшается в связи с широким использованием высококалорийного жидкого и газообразного топлива.

удельная теплотворная способность древесины различных пород

Порода Массовая теплотворная способность, ккал Плотность абсолютно сухой древесины, г/см3 Удельная теплотворная способность, ккал
Дуб 4857 0,64 3108
Береза 4919 0,57 2804
Сосна 5064 0,42 2127
Ольха 4878 0,43 2097
Ель 4857 0,38 1846
Осина 4779 0,37 1768

 

Механические свойства древесины.

общие сведения о механических свойствах древесины При использовании древесины в качестве конструкционного и поделочного материала, а также в технологических процессах обработки проявляются ее механические свойства, характеризующие способность древесины сопротивляться механическим усилиям. Показатели этих свойств древесины определяют путем специальных экспериментов — механических испытаний, при которых создают различные напряженные и деформированные состояния образцов древесины. Задачи механических испытаний […]

нет комментариев

Электромагнитные свойства древесины.

Свойства древесины, проявляющиеся при воздействии электромагнитных излучений. Различные виды излучений, представляющих собой электромагнитные колебания, образуют спектр, охватывающий огромный диапазон длин волн. Наибольшую длину имеют радиоволны (от десятков километров до миллиметров). Действие на древесину этих видов излучений частично изложено при рассмотрении электрических свойств древесины. Ниже будут рассмотрены свойства древесины, проявляющиеся при действии излучений, занимающих остальную часть […]

нет комментариев

Звуковые свойства древесины

показатели, характеризующие распространение звука в древесине Как известно, звук представляет собой колебания, волнообразно распространяющиеся в упругих средах. Особенности распространения звуковых колебаний зависят от физических свойств среды и характеризуются рядом показателей. Скорость распространения звука тем больше, чем меньше плотность среды р и выше ее жесткость (модуль упругости Е). При распространении волны в направлении колебательного движения частиц […]

нет комментариев

Электрические свойства древесины.

электропроводность древесины Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное […]

нет комментариев

Тепловые свойства древесины

теплоемкость древесины Способность древесины поглощать тепло характеризуется теплоемкостью. В качестве меры используется удельная теплоемкость с, которая представляет собой количество тепла, необходимое для того, чтобы нагреть древесину массой 1 кг на 1о С. Размерность удельной теплоемкости — ккал/кг х град или в международной системе единиц СИ-дж/кг х град. В пределах изменения температуры от 0 до 100° […]

нет комментариев

Влажность древесины

влага в древесине Наличие влаги в древесине обусловлено нормальной жизнедеятельностью живого растущего организма. В древесине срубленного дерева содержание влаги (в зависимости от условий хранения, и эксплуатации изделий) может увеличиваться или уменьшаться. В большинстве случаев практики влагу из древесины удаляют, чтобы избежать ряда отрицательных явлений. Для количественной характеристики содержания влаги в древесине используют показатель влажности древесины. […]

нет комментариев

Физические свойства древесины

Свойства древесины, проявляющиеся при взаимодействии ее с внешней средой, но не связанные с изменением химического состава древесинного вещества, принято называть физическим. Из этого обширного ряда свойств несколько условно выделяются свойства древесины, обнаруживающиеся под действием механических усилий. Ниже рассматриваются физические свойства, показатели которых определяются методами, регламентированными действующими стандартами. Кроме того, освещается ряд пока мало распространенных, но […]

нет комментариев

Химические свойства древесины

химический состав древесины Древесина состоит из органических веществ, в состав которых входят углерод С, водород Н, кислород О и немного азота. Элементарный химический состав древесины разных пород практически одинаков. В среднем абсолютно сухая древесина независимо от породы содержит 49,5% углерода, 44,2% кислорода (с азотом) и 6,3% водорода. Азота в древесине содержится около 0,12%. Элементарный химический […]

нет комментариев

Макроскопическое строение древесины

макроскопическое строение древесины – заболонь, ядро, спелая древесина У большинства наших лесных пород древесина окрашена в светлые цвета, причем у одних пород нет разницы в окраске всей массы древесины, а у других — периферическая, прилегающая к коре часть древесины окрашена светлее. Эта более светлая часть ствола называется заболонью. Центральная темноокрашенная часть ствола называется ядром (см. […]

нет комментариев

Строение древесины

строение древесины – части растущего дерева Растения делятся на низшие и высшие. К низшим относятся бесстебельные растения: бактерии, водоросли, грибы, лишайники. К высшим растениям принадлежат мхи, папоротники, голосемянные и покрытосемянные. Древесные растения, которые дают древесину как материал для разнообразного применения, входят в состав двух последних групп. Широко распространенные на территории России хвойные породы относятся к […]

нет комментариев

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=

Прочность древесины

изделия из массива на заказ

прочность древесины при растяжении

прочность древесины при растяжении вдоль волокон

Прочность при растяжении вдоль волокон определяют на образце. Заготовки для образца получают путем выкалывания, а не выпиливания, чтобы избежать перерезания волокон. Назначение сложной формы образца с массивной головкой и тонкой рабочей частью — не допустить преждевременного разрушения образца от напряжений на смятие и скалывание, возникающих в головках его в процессе испытания, при зажиме в головках машины.

Перед укреплением в головках машины измеряют сечение рабочей части образца, а в каждую головку вставляют стальной стержень, высотой 18 мм, предохраняющий головку от чрезмерного смятия во время испытания. Нагружение проводят равномерно со средней скоростью 1500±400 кГ/мин на весь образец. Образец доводят до разрушения и по шкале машины отсчитывают нагрузку Рmах с точностью 5 кГ.

Влияние влажности при растяжении вдоль волокон незначительно. Деформация при растяжении выражается в некотором (незначительном) удлинении образца; разрушение происходит в виде разрыва тканей, причем при высокой прочности разрыв бывает длинноволокнистым или защепистым, а при низкой прочности — раковистым, почти гладким.

Древесина обладает высокой прочностью при растяжении вдоль волокон; среднюю величину ее для древесины разных пород можно принять 1200 кГ/см2. Однако использовать это свойство на практике в полной мере трудно из-за сложности закрепления концов детали, где развиваются скалывающие напряжения и происходит смятие древесины. Так как древесина плохо сопротивляется этим видам сил, практически разрушение обычно происходит не в форме разрыва, а в местах закрепления детали — в виде скалывания или смятия. Вследствие этого древесина сравнительно редко применяется для работы на растяжение вдоль волокон.

таблица прочности древесины при растяжении вдоль волокон

Порода Предел прочности, кГ/см2, при влажности Порода Предел прочности, кГ/см2, при влажности
15% 30 % и более 15% 30% и более
Лиственница 1225 965 Ясень 1390 1095
Сосна 1010 790 Граб 1345 1060
Ель 1005 790 Осина 1200 945
Кедр 885 695 Бук 1180 925
Пихта сибирская 655 515 Липа 1160 910
Акация белая 1690 1095 Ольха 965 760
Береза 1610 1265 Тополь 870 685

Прочность при растяжении вдоль волокон подвержена довольно сильным колебаниям даже для древесины одной и той же породы. Это объясняется тем, что на прочность при растяжении существенное влияние оказывают особенности строения древесины; малейшее отклонение от правильного расположения волокон влечет за собой заметное уменьшение прочности. Предел пропорциональности при растяжении вдоль волокон составляет 0,83 от величины предела прочности для древесины хвойных пород (лиственница, сосна, пихта) и 0,70 для лиственных кольцесосудистых. (дуб, ясень).

прочность древесины при растяжении поперек волокон

Затруднения, возникающие при изготовлении образца сравнительно большой (для плоскости поперек волокон) длины, могут быть уменьшены путем использования клееных образцов. В клееных образцах центральный участок из исследуемой древесины должен иметь длину не менее 90 мм и включать в себя плоскую рабочую зону, криволинейные переходы и небольшую часть длины головок. Прочность клеевого шва на растяжение должна быть не менее 100 кГ/см2.

Для определения предела прочности при растяжении поперек волокон в радиальном и тангенциальном направлениях изготовляются образцы таким образом, чтобы годичные слои на плоской стороне образца были направлены соответственно поперек или вдоль длины его рабочей части. Сравнительно большая длина рабочей части образца не всегда позволяет определить прочность строго по тангенциальному направлению. В некоторой мере это относится и к радильным образцам, поэтому для каждого образца определяется степень кривизны годичных слоев как отношение в процентах стрелы дуги годичного слоя, проходящего через середину рабочей части образца, к хорде длиной 2 см (для тангенциальных образцов) и к фактической толщине рабочей части (для радиальных образцов). Перед испытаниями измеряют размеры сечения рабочей части образца. Нагружение производят со скоростью 250 ±50 кГ/мин на образец. Отсчет максимальной нагрузки Рmах снимают с точностью до 1 кГ. Для образцов, разрушившихся в рабочей части, определяют величину предела прочности по формуле.

таблица прочности древесины при растяжении поперек волокон

Порода Предел прочности, кГ/см2, при растяжении Порода Предел прочности, кГ/см2, при растяжении
радиальном тангенциальном радиальном тангенциальном
Сосна 52 33 Бук 121 79
Ель 48 30 Граб 128 78
Лиственница 54 48 Клен 128 85
Кедр 41 26 Береза 108 60
Пихта 39 27 Осина 69 43
Дуб 77 60 Ольха 70 55
Ясень 87 67 Липа 80 46

Хвойные породы по сравнению с лиственными имеют вдвое меньшую прочность как при радиальном, так и при тангенциальном растяжении. Прочность при растяжении поперек волокон в среднем для всех пород составляет примерно 1/20 прочности при растяжении вдоль волокон. С одной стороны, невысокая прочность, а с другой — возможность появления трещин в плоскости разрушения, когда сопротивление может упасть до нуля, заставляют воздерживаться от применения древесины для работы на растяжение поперек волокон. Прочность при растяжении поперек волокон имеет значение для характеристики склонности древесины к растрескиванию при высыхании, когда в ней возникают растягивающие внутренние напряжения в плоскости поперек волокон. Кроме того, прочность при растяжении поперек волокон имеет существенное значение при резании древесины.

 прочность древесины при сжатии

прочность древесины при сжатии вдоль волокон

Наиболее характерным из механических свойств древесины и важным в практическом отношении является прочность при сжатии вдоль волокон. Для испытаний применяют образец в форме прямоугольной призмы с основанием 20X20 мм и высотой (по направлению волокон) 30 мм. После измерения на половине высоты, ширины а и толщины b образец располагают между опорными поверхностями машины и нагружают вдоль волокон равномерно со средней скоростью 4000±1000 кГ/мин на весь образец.

Испытание доводят до явного разрушения образца и по шкале машины отсчитывают максимальную нагрузку Рmах с точностью 5 кГ. Предел прочности вычисляют с точностью 5 кГ/см2 по формуле. Величина предела прочности при сжатии вдоль волокон существенно снижается при увеличении влажности до предела гигроскопичности. Деформация при сжатии вдоль волокон выражается в некотором укорочении образца. Разрушение обычно начинается с продольного изгиба отдельных волокон; во влажной древесине или в образцах из мягких или вязких пород наблюдается смятие у торцов и выпучивание боков, а в сухой древесине или в образцах из твердых пород — сдвиг одной части образца относительно другой по линии, проходящей на тангенциальной поверхности под углом около 60° к оси образца.

Разрушения древесины при сжатии вдоль волокон в самом начале этого явления, еще совершенно незаметного для невооруженного глаза, в толстых стенках поздних трахеид хвойных пород появляются поперечные штрихи, так называемые линии скольжения, составляющие с осью трахеид угол около 70°. В дальнейшем линии скольжения соединяются в линии разрушения, направленные обычно под углом к волокнам; в этой стадии разрушения искривления волокон еще не наблюдается. После появления этих линий начинается разрушение, видимое невооруженным глазом. Это разрушение выражается в искривлении клеточных стенок, а вместе с ними и волокон.

Характер разрушения может быть двух типов — сдвиг и смятие. В первом случае волокна искривляются, сдвигаясь в сторону и относительно друг друга, а во втором — одна часть волокна сминается и частично проникает в полость другой части. Древесина оказывает довольно большое сопротивление сжатию вдоль волокон, что обусловливает частое ее применение в этих условиях работы (сваи, стойки, ноги стропильных ферм и др.). Рассматриваемое свойство древесины хорошо изучено.

В среднем для всех пород предел прочности при сжатии вдоль волокон составляет (с округлением) 450 кГ/см2, т. е. он примерно в 2,7 раза ниже предела прочности при растяжении вдоль волокон. Предел пропорциональности при сжатии вдоль волокон для некоторых наших пород (лиственницы, сосны, пихты, ясеня) составляет в среднем 0,7 предела прочности.

прочность древесины при сжатии поперек волокон

В местах врубок или соединений деревянных деталей с металлическими (под башмаками, болтами и др.) существенное практическое значение имеет прочность древесины при сжатии поперек волокон. Классическим примером работы древесины на сжатие поперек волокон служат также железнодорожные шпалы (места под рельсами). Различают три случая сжатия древесины поперек волокон:

1. Нагрузка распределена по всей поверхности сжимаемой детали.

2. Нагрузка приложена на части длины, но по всей ширине детали.

3. Нагрузка приложена на части длины и ширины детали.

Все эти случаи встречаются в практике: первый случай — при прессовании древесины, второй — при использовании шпал под рельсами, третий — при употреблении древесины под головки металлических креплений. При сжатии поперек волокон древесины разных пород наблюдаются два типа деформирования: однофазное, как и при сжатии вдоль волокон, и трехфазное, характеризуемое более сложной диаграммой.

таблица прочности древесины при сжатии вдоль волокон

Порода Предел прочности, кГ/см2, при влажности Порода Предел прочности, кГ/см2, при влажности
15% 30% и более 15% 30 % и более
Лиственница 550 255 Дуб 510 310
Сосна 415 210 Ясень 500 325
Ель 390 195 Орех грецкий 485 240
Кедр 360 185 Бук 475 260
Пихта сибирская 345 175 Береза 465 225
Акация белая 665 415 Вяз 405 250
Граб 530 265 Липа 400 240
Клен 520 280 Ольха 385 235
Груша 515 265 Осина 375 190
Тополь 345 180

 

При однофазном деформировании на диаграмме хорошо выражен приблизительно прямолинейный участок, продолжающийся почти до достижения максимальной нагрузки, при которой образец древесины разрушается. При трехфазном деформировании процесс деформирования древесины при сжатии поперек волокон проходит три фазы: первая фаза характеризуется на диаграмме начальным, примерно прямолинейным участком, показывающим, что в этой стадии деформирования древесина условно подчиняется закону Гука, как и при однофазном деформировании; в конце этой фазы достигается условный предел пропорциональности; вторая фаза характеризуется на диаграмме почти горизонтальным или слабонаклонным криволинейным участком; переход из первой фазы во вторую более или менее резкий; третья фаза характеризуется на диаграмме прямолинейным участком с крутым подъемом; переход из второй фазы в третью в большинстве случаев постепенный.

По характеру деформирования при радиальном и тангенциальном сжатии породы можно подразделить на две группы: к первой группе относятся хвойные и кольцесосудистые лиственные породы (за исключением дуба), а ко второй — рассеяннососудистые лиственные породы. Древесина хвойных пород (сосна, ель) и колъцесосудистых лиственных пород (ясень, ильм) при радиальном сжатии дает диаграмму, характерную для трехфазного деформирования, а при тангенциальном сжатии — диаграмму однофазного деформирования.

Отмеченный характер деформирования древесины названных пород может быть объяснен следующим. При радиальном сжатии деформация первой фазы протекает в основном из-за сжатия ранней зоны годичных слоев, слабой в механическом отношении; первая фаза продолжается до тех пор, пока стенки элементов ранней зоны не потеряют устойчивости и не начнут сминаться. С потерей устойчивости этих элементов начинается вторая фаза, когда деформация протекает в основном в результате смятия элементов ранней зоны; это происходит при почти неизменной или мало возрастающей нагрузке. По мере вовлечения в деформацию элементов поздней зоны годичных слоев вторая фаза плавно переходит в третью. Третья фаза протекает главным образом за счет сжатия элементов поздней зоны, состоящей преимущественно из механических волокон, которые могут сминаться только при больших нагрузках.

При тангенциальном сжатии деформирование происходит с самого начала за счет элементов обеих зон годичного слоя, причем характер деформирования, естественно, определяется элементами поздней зоны. В конце деформирования наступает разрушение образца, яснее выраженное у древесины хвойных пород: образцы обычно выпучиваются в сторону выпуклости годичных слоев, которые при тангенциальном изгибе ведут себя, как кривые брусья при продольном изгибе.

Среди кольцесосудистых лиственных пород отмеченным закономерностям не подчиняется дуб, древесина которого при радиальном сжатии деформируется по однофазному типу, а при тангенциальном обнаруживает тенденцию к переходу на трехфазное деформирование. Это объясняется тем, что при радиальном сжатии сильное влияние на характер деформирования оказывают широкие сердцевинные лучи. При тангенциальном сжатии тенденция к переходу на трехфазное деформирование объясняется радиальной группировкой мелких сосудов в поздней зоне.

Древесина рассеяннососудистых лиственных пород (березы, осины, бука) обнаружила трехфазное деформирование как при радиальном, так и при тангенциальном сжатии, что, по-видимому, надо объяснить отсутствием заметной разницы между ранней и поздней зонами годичных слоев. У древесины граба наблюдается переходная форма деформирования (от трехфазного к однофазному); очевидно, в этом случае сказывается влияние ложношироких сердцевинных лучей.

Начало разрушения древесины можно наблюдать лишь при однофазном деформировании; при трехфазном деформировании древесина может уплотниться до четверти начальной высоты без видимых следов разрушения. По этой причине при испытаниях на сжатие поперек волокон ограничиваются определением напряжения при пределе пропорциональности по диаграмме сжатия, не доводя образец до разрушения.

Древесину испытывают двумя методами: при сжатии по всей поверхности образца и при сжатии на части длины, но по всей ширине (смятие). Для испытаний на сжатие поперек волокон изготовляют образец такой же формы и размеров, как и при сжатии вдоль волокон; годичные слои на торцах в этом образце должны быть параллельны одной паре противоположных граней и перпендикулярны другой паре. Образец располагают на опорной части машины боковой поверхностью и подвергают ступенчатой нагрузке по всей верхней поверхности со средней скоростью 100 ±20 кГ/мин. Деформацию древесины мягких пород измеряют индикатором с точностью 0,005 мм через каждые 20 кГ нагрузки и твердых пород — через 40 кГ; испытание продолжается до явного перехода предела пропорциональности. На основании парных отсчетов (нагрузка-деформация) вычерчивают диаграмму сжатия, на которой определяют с точностью до 5 кГ нагрузку при пределе пропорциональности как ординату точки перехода прямолинейного участка диаграммы в явно криволинейный. Условный предел прочности при сжатии поперек волокон подсчитывают путем деления найденной указанным способом нагрузки при пределе пропорциональности на площадь сжатия (произведение ширины образца на его длину).

Для испытаний на смятие применяют образец в форме брусочка квадратного сечения 20X20 мм, длиной 60 мм. Нагрузка на такой образец передается по всей ширине через стальную призму шириной 2 см, помещаемую посредине образца перпендикулярно длине; прилегающие к образцу ребра призмы имеют закругления радиусом 2 мм. В остальном порядок и условия испытания те же, что и по первому способу, но условный предел прочности подсчитывается путем деления нагрузки при пределе пропорциональности на площадь сжатия, равную 1,8 а, где а — ширина образца, 1,8 — средняя ширина нажимной поверхности призмы в сантиметрах.

Условный предел прочности при смятии поперек волокон получается на 20—25% выше, чем при сжатии; это объясняется дополнительным сопротивлением от изгиба волокон у ребер призмы. При третьем случае сжатия поперек волокон показатели условного предела прочности немного превышают показатели, полученные во втором случае в результате дополнительного сопротивления скалыванию поперек волокон у ребер штампа, идущих параллельно волокнам древесины.

условный предел прочности при смятии поперек волокон

Порода Условный предел прочности, кГ/см2, при смятии Порода Условный предел прочности, кГ/см2. при смятии
радиальном тангенциальном радиальном тангенциальном
Сосна 34 51 Карагач 52 50
Лиственница 44 63 Граб 147 111
Дуб 76 56 Бук 78 52
Ясень 90 99 Клен 112 73
Вяз 51 39 Береза 65 41
Ильм 52 55 Осина 36 29

Древесина пород с широкими или очень многочисленными лучами (дуб, бук, клен, отчасти береза) характеризуется более высоким условным пределом прочности при радиальном смятии (примерно в 1,5 раза); для прочих лиственных пород (с узкими лучами) показатели условного предела прочности при смятии в обоих направлениях практически одинаковы или мало различаются.

Для древесины хвойных пород, наоборот, условный предел прочности при тангенциальном смятии в 1,5 раза выше, чем при радиальном вследствие резкой неоднородности в строении годичных слоев; при радиальном смятии деформируется главным образом более слабая, ранняя, древесина, а при тангенциальном сжатии нагрузка с самого начала воспринимается и поздней древесиной. По сравнению с пределом прочности при сжатии вдоль волокон условный предел прочности при смятии поперек волокон составляет в среднем около 1/8 (от 1/6 для твердых лиственных пород до 1/10 для хвойных и мягких лиственных пород).

 прочность древесины при статическом изгибе

Для испытания на статический изгиб применяются образцы в форме бруска размерами 20X20X300 мм. Неподвижные опоры и ножи должны иметь закругление радиусом 15 мм; расстояние между центрами опор l = 24 см. После измерения посредине длины сечения (ширины b и высоты h) образец располагают на опорах и нагружают в двух точках на расстоянии 8 см от каждой опоры, равномерно со скоростью 700 ±150 кГ/мин на весь образец, который доводится до полного излома. По шкале машины отсчитывают максимальную Нагрузку Рmах с точностью 1 кГ.

Предел прочности при статическом изгибе существенно зависит от влажности. При изгибе в древесине возникают нормальные напряжения (на растяжение и сжатие вдоль волокон) и касательные напряжения (на скалывание вдоль волокон). Первые достигают максимума в крайних волокнах, наиболее удаленных от нейтральной плоскости, а вторые — в нейтральной зоне, которая теоретически должна проходить посредине высоты бруска.

В древесине из-за различий прочности при растяжении и сжатии вдоль волокон нейтральная плоскость смещается в сторону растянутой зоны, что обусловливает неравенство нормальных напряжений (на растяжение и сжатие вдоль волокон). Деформация при изгибе внешне выражается прогибом образца и измеряется стрелой прогиба. Так как прочность древесины при сжатии вдоль волокон значительно меньше, чем прочность при растяжении, разрушение при изгибе начинается в зоне сжатия в виде складок, хотя на глаз оно редко заметно. Окончательное разрушение происходит в зоне растяжения и заключается в разрыве или отщепе крайних волокон и полном изломе образца. Излом древесины высокого качества волокнистый или защепистый, при низком качестве — раковистый, почти гладкий.

Защепистость излома более резко выражена в растянутой зоне образца; пучки волокон там крупнее и длиннее; в сжатой зоне, наоборот, эти пучки мелкие и короткие. В табл. приведены показатели предела прочности при статическом изгибе для древесины основных наших лесных пород.

Прочность древесины при статическом изгибе по величине занимает промежуточное положение между прочностью при растяжении и сжатии вдоль волокон и может быть в среднем для разных пород принята равной около 900 кГ/см2. Если прочность при сжатии вдоль волокон принять за единицу, прочность при статическом изгибе будет примерно в 2 раза, а прочность при растяжении вдоль волокон — в 2,7 раза выше. Предел пропорциональности при статическом изгибе составляет в среднем 0,7 от предела прочности.

таблица прочности древесины при статическом изгибе

Порода Предел прочности, кГ/см2, при влажности Порода Предел прочности, кГ/см2, при влажности
15 % 30 % и выше 15% 30 % и выше
Лиственница 985 615 Орех грецкий 975 605
Сосна 760 495 Береза 965 595
Ель 705 440 Бук 955 645
Кедр 045 425 Дуб 945 680
Пихта сибирская 605 405 Вяз 840 590
Акация белая 1390 975 Липа 775 540
Граб 1210 735 Ольха 710 495
Ясень 1085 745 Осина 685 455
Клен 1055 775 Тополь 610 405
Груша 975 635

 

Высокая прочность и легкость приложения усилия обусловливают широкое применение древесины для деталей, работающих на изгиб: всевозможные балки, стропила, фермы, мосты, ригели шахтных креплений, подмости, обрешетка и т. д. Различие между прочностью при радиальном и тангенциальном изгибе обнаруживается только у хвойных пород: предел прочности при тангенциальном изгибе может быть на 10—12% выше, чем при радиальном; у лиственных пород прочность при изгибе в обоих направлениях практически можно считать одинаковой (разница 2—4%). Кроме обычного поперечного изгиба, когда волокна древесины направлены вдоль оси: бруска, могут быть случаи, когда волокна направлены поперек оси бруска. В двух последних случаях предел прочности древесины ели и сосны составляет 1—5%, а бука — около 20% предела прочности при обычном изгибе.

прочность древесины при сдвиге

Надежность соединения элементов деревянных конструкций и изделий во многих случаях определяется способностью древесины сопротивляться действию касательных напряжений. Для того чтобы при механических испытаниях древесины установить предельные значения касательных напряжений, следовало бы создать условия чистого сдвига рабочей части образца. Однако это сопряжено со значительными трудностями в технике эксперимента. Вместе с тем для инженерных расчетов можно ограничиться результатами более простых испытаний на сдвиг. При этих испытаниях к образцу прикладываются две равные и противоположно направленные силы, вызывающие разрушение в параллельной им плоскости. Учитывая волокнистое строение древесины, различают три вида испытаний на сдвиг: скалывание вдоль волокон, скалывание поперек волокон и перерезание древесины поперек волокон. Схемы действия сил при этих испытаниях, а также плоскости разрушения, которые задаются принудительно. Каждый вид испытаний на сдвиг может быть проведен не только в радиальном, как показано на схемах, но и в тангенциальном направлении.

прочность при скалывании вдоль волокон

Для испытаний на скалывание применяют образец. В каждом образце с двух сторон (по линии ожидаемого скалывания) с точностью до 0,1 мм измеряют толщину образца b и длину скалывания l; из каждой пары измерений вычисляется среднее.

Для испытания образец укрепляют в приборе. Прибор с образцом помещают на опорную платформу машины; нагружение проводится через стальной брусочек на верхний торец образца равномерно со средней скоростью 1250±250 кГ/мин. Образец доводят до разрушения. По шкале машины отсчитывают максимальную нагрузку Рmах. Значения пределов прочности при скалывании вдоль волокон, полученные при использовании прибора, оказываются завышенными в среднем на 15% в результате трения образца об опорную стенку и подвижную опору прибора. Древесина обладает невысокой прочностью при скалывании вдоль волокон; при этом древесина лиственных пород лучше сопротивляется скалыванию по сравнению с древесиной хвойных пород: прочность лиственных пород примерно в 1,5 раза выше. Более высокая прочность (на 10—30%) древесины лиственных пород наблюдается при тангенциальном скалывании по сравнению с радиальным; это превышение тем больше, чем лучше развиты в древесине сердцевинные лучи (бук). Для древесины хвойных пород прочность при скалывании в обоих случаях надо считать примерно одинаковой.По сравнению с прочностью при сжатии вдоль волокон прочность при скалывании составляет для древесины хвойных пород 1/5 — 1/7, а для древесины лиственных пород 1/4 — 1/5, в среднем для всех пород это отношение, по имеющимся данным, можно принять равным около 1/5. Несмотря на невысокую прочность, древесина довольно часто работает на скалывание, например при сопряжении стропильной ноги с затяжкой.

Прочность при скалывании вдоль волокон подвержена сильной изменчивости, что можно объяснить влиянием малейших отклонений от правильного расположения волокон (свилеватостью, мелкими искривлениями волокон и т. д.). В табл. приведены данные о прочности при скалывании вдоль волокон древесины основных лесных пород.

прочность древесины при скалывании и перерезании поперек волокон

Напряжения на скалывание поперек волокон возникают в деревянных шпонках и шпунтовых соединениях, а на перерезание поперек волокон — под металлическими креплениями: шайбами, головками болтов и др. Для испытаний на скалывание поперек волокон применяют образец, изображенный на рис. 60; для испытаний на перерезание поперек волокон образец имеет форму пластинки сечением 5X20 мм и длиной (вдоль волокон) 50 мм.

таблица прочность древесины при скалывании вдоль волокон

Порода Предел прочности, кГ/см2, при скалывании Порода Предел прочности, кГ/см2, при скалывании
радиальном при влажности тангенциальном при влажности радиальном при влажности тангенциальном при влажности
15% 30% и выше 15% 30% и выше 15% 30%, и выше 15% 30 % и выше
Лиственница 91 63 86 56 Орех грецкий 100 59 106 61
Сосна 69 43 67 45 Дуб 93 76 111 90
Ель 63 41 62 44 Береза 85 50 102 59
Кедр 60 40 64 43 Вяз 83 65 93 73
Пихта сибирская 58 45 59 42 Груша 81 56 126 81
Граб 141 88 177 106 Липа 78 56 74 50
Ясень 126 94 122 87 Ольха 74 52 91 63
Клен 113 84 129 90 Осина 57 36 78 50
Бук 106 70 132 89 Тополь 55 34 66 42

Испытания на скалывание поперек волокон проводятся так же, как и на скалывание вдоль волокон: образец укрепляют в таком же приборе, нагружают со скоростью 200 ±50 кГ/мин. Испытания на перерезание поперек волокон проводят в особом приборе, в котором образец по концам зажимают и посредине длины перерезают ножом плоской формы (схема испытании показана на рис. 60). Нагружение производится со скоростью 1000 ±200 кГ/мин на весь образец. Характеристика соотношения: если предел прочности при скалывании вдоль волокон принять за единицу, предел прочности при скалывании поперек волокон будет в 2 раза ниже, а при перерезании поперек волокон в 4 раза выше.

 Прочность древесины при кручении

Прочность при кручении может быть характеризована величиной прочности при скалывании вдоль волокон. При кручении в материале возникают касательные напряжения в двух взаимно перпендикулярных плоскостях: в плоскости, параллельной оси, и в плоскости, перпендикулярной оси закручиваемого стержня. Эти напряжения возрастают от центра, где они равны нулю, по направлению к периферии, где они достигают максимума.

Разрушение образца из древесины, ось которого совпадает с направлением волокон, происходит в виде продольной трещины от скалывания вдоль волокон, так как прочность древесины при скалывании в 4 раза меньше, чем при перерезании поперек волокон. Из сказанного ясно, что прочность древесины при кручении в значительной мере определяется прочностью при скалывании и, следовательно, не может быть высокой.

предел прочности при кручении

Порода Предел прочности, кГ/см2 Порода Предел прочности, кГ/см2
Сосна 98 Ясень 198
Лиственница 139 Бук 171
Береза 135
Ель 110 Береза желтая 210
Пихта кавказская 92
Липа 115
Дуб 150

Древесина работает на кручение в валах, осях повозок и т.д.; в самолетах напряжение кручения испытывают лопасти винта — очень ответственной детали. Для пород, перечисленных в таблице, прочность при кручении в 1.5 раза выше прочности при скалывании. Наряду с описанным случаем кручения, когда ось закручивания совпадает с направлением волокон, может быть и случай кручения, когда волокна в образце расположены перпендикулярно оси закручивания. В этом случае образцы будут разрушаться уже от касательных напряжений в плоскости, перпендикулярной оси закручивания, т. е. от скалывания поперек волокон, и прочность поэтому будет ниже (для сосны и ели в 2 — 3 раза).

Механические свойства древесины.

общие сведения о механических свойствах древесины При использовании древесины в качестве конструкционного и поделочного материала, а также в технологических процессах обработки проявляются ее механические свойства, характеризующие способность древесины сопротивляться механическим усилиям. Показатели этих свойств древесины определяют путем специальных экспериментов — механических испытаний, при которых создают различные напряженные и деформированные состояния образцов древесины. Задачи механических испытаний […]

нет комментариев

Электромагнитные свойства древесины.

Свойства древесины, проявляющиеся при воздействии электромагнитных излучений. Различные виды излучений, представляющих собой электромагнитные колебания, образуют спектр, охватывающий огромный диапазон длин волн. Наибольшую длину имеют радиоволны (от десятков километров до миллиметров). Действие на древесину этих видов излучений частично изложено при рассмотрении электрических свойств древесины. Ниже будут рассмотрены свойства древесины, проявляющиеся при действии излучений, занимающих остальную часть […]

нет комментариев

Звуковые свойства древесины

показатели, характеризующие распространение звука в древесине Как известно, звук представляет собой колебания, волнообразно распространяющиеся в упругих средах. Особенности распространения звуковых колебаний зависят от физических свойств среды и характеризуются рядом показателей. Скорость распространения звука тем больше, чем меньше плотность среды р и выше ее жесткость (модуль упругости Е). При распространении волны в направлении колебательного движения частиц […]

нет комментариев

Электрические свойства древесины.

электропроводность древесины Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное […]

нет комментариев

Тепловые свойства древесины

теплоемкость древесины Способность древесины поглощать тепло характеризуется теплоемкостью. В качестве меры используется удельная теплоемкость с, которая представляет собой количество тепла, необходимое для того, чтобы нагреть древесину массой 1 кг на 1о С. Размерность удельной теплоемкости — ккал/кг х град или в международной системе единиц СИ-дж/кг х град. В пределах изменения температуры от 0 до 100° […]

нет комментариев

Влажность древесины

влага в древесине Наличие влаги в древесине обусловлено нормальной жизнедеятельностью живого растущего организма. В древесине срубленного дерева содержание влаги (в зависимости от условий хранения, и эксплуатации изделий) может увеличиваться или уменьшаться. В большинстве случаев практики влагу из древесины удаляют, чтобы избежать ряда отрицательных явлений. Для количественной характеристики содержания влаги в древесине используют показатель влажности древесины. […]

нет комментариев

Физические свойства древесины

Свойства древесины, проявляющиеся при взаимодействии ее с внешней средой, но не связанные с изменением химического состава древесинного вещества, принято называть физическим. Из этого обширного ряда свойств несколько условно выделяются свойства древесины, обнаруживающиеся под действием механических усилий. Ниже рассматриваются физические свойства, показатели которых определяются методами, регламентированными действующими стандартами. Кроме того, освещается ряд пока мало распространенных, но […]

нет комментариев

Химические свойства древесины

химический состав древесины Древесина состоит из органических веществ, в состав которых входят углерод С, водород Н, кислород О и немного азота. Элементарный химический состав древесины разных пород практически одинаков. В среднем абсолютно сухая древесина независимо от породы содержит 49,5% углерода, 44,2% кислорода (с азотом) и 6,3% водорода. Азота в древесине содержится около 0,12%. Элементарный химический […]

нет комментариев

Макроскопическое строение древесины

макроскопическое строение древесины – заболонь, ядро, спелая древесина У большинства наших лесных пород древесина окрашена в светлые цвета, причем у одних пород нет разницы в окраске всей массы древесины, а у других — периферическая, прилегающая к коре часть древесины окрашена светлее. Эта более светлая часть ствола называется заболонью. Центральная темноокрашенная часть ствола называется ядром (см. […]

нет комментариев

Строение древесины

строение древесины – части растущего дерева Растения делятся на низшие и высшие. К низшим относятся бесстебельные растения: бактерии, водоросли, грибы, лишайники. К высшим растениям принадлежат мхи, папоротники, голосемянные и покрытосемянные. Древесные растения, которые дают древесину как материал для разнообразного применения, входят в состав двух последних групп. Широко распространенные на территории России хвойные породы относятся к […]

нет комментариев

 
смотрим далее
Информация / Договор-оферта / Доставка / Как заказать / Оплата / Результаты поиска / контакты / Портфолио / Продукция / Двери / Домовая резьба / Лестницы / Магазин / Антикварная мебель /Банкетки, скамьи, табуреты / Деревянные резные рамы /Диваны, кресла, стулья / Зеркала / Камины резные из дерева / Комоды и тумбы / Мебель в прихожую / Мебель для детей и мам / Мини-бары, бутылочницы / Накладной декор / Полки для кухни / Резные наличники и услуги мастера / Столики декоративные / Столы / Шкафы, гардеробы / Мебель / Обучающий марериал / Руководство / Резные наличники / Резьба по дереву / Услуги мастера / Вызов мастера / Дизайнерские услуги / Консалтинговые услуги / Онлайн-консультации / Первичный дизайн и расчет

Записи не найдены

Записи не найдены





Рейтинг@Mail.ru</noscript><br />
<!-- //Rating@Mail.ru counter --></p>
<p><span lang=